Some common fixed point theorems for weakly compatible mappings on cone Banach space
Abstract
The primary objective of this paper is to establish the existence of coincidence points and common fixed points for $N \in \mathbb N $ self-mappings defined on cone Banach spaces under the framework of weak compatibility. By employing an ordered structure and suitable contractive conditions, we present general fixed point results that extend and unify several known theorems in the existing literature. Specifically, Theorem 2, 3 and 4 address the existence of coincidence and common fixed points for eight, six, and four self-mappings, respectively. Our findings contribute to the ongoing development of fixed point theory in cone metric spaces, offering broad generalizations and encompassing a wide range of previously established results as special cases.
References
[1] M. Abbas, G. Jungck, Common Fixed Point results for noncommuting mappings without continuity in cone metric space, J. Math. Anal. Appl., 341, 2008, 416. https://doi.org/10.1016/j.jmaa.2007.09.070
[2] T. Abdeljawad et al., Common Fixed Point Theorems In Cone Banach Spaces, Hacettepe J. Math. Stat., 40(2), 2011, 211-217. https://dergipark.org.tr/en/download/article-file/86609
[3] R. K. Gujetiya et al., Common Fixed Point Theorem for Compatible Mapping on Cone Banach Space, Int. J. Math. Anal., Vol. 8, No. 35, 2014, 1697-1706. http://dx.doi.org/10.12988/ijma.2014.46166
[4] L. G. Huang and X. Zhang, Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings, J. Math. Anal. Appl., 332(2), 1468-1476, 2007.
[5] E. Karapinar, Fixed Point Theorems in Cone Banach Spaces, Fixed Point Theory and Applications, Vol.2009, Article ID 609281,9 pages, 2009. doi:10.1155/2009/609281.
[6] R. Tiwari, D.P. Shukla, Coincidence Points and Common Fixed Points in Cone Banach Spaces, J. Math. Comput. Sci., 2(5), 2012, 1464-1474. https://scik.org/index.php/jmcs/article/view/451
[7] K. Sarkar, K. Tiwary, Common Fixed Point Theorems for Weakly Compatible Mappings on Cone Banach Space, Int. J. sci. Res., Vol.5(2),2018,75-79. www.isroset.org
[8] P. G. Varghese, K. S. Dersanambika, Common Fixed Point Theorem on Cone Banach Space, Kathmandu University J. Sci. Eng. Tech., Vol.9, No.1, 2013, 127-133.
[9] M. Asadi, and H. Soleimani, Examples in cone metric spaces: A survey. Middle-East Journal of Scientific Research, 11(12), 2012, pp.1636-1640. DOI: 10.5829/idosi.mejsr.2012.11.12.1462.
[10] M Asadi, B.E. Rhoades, H. Soleimani, Some notes on the paper" The equivalence of cone metric spaces and metric spaces" Fixed point theory and applications 2012, 1-4. http://www.fixedpointtheoryandapplications.com/content/2012/1/87
[11] M. Asadi, H. Soleimani, S.M. Vaezpour, An order on subsets of cone metric spaces and fixed points of set-valued contractions, Fixed Point Theory and Applications 2009, 1-8. doi:10.1155/2009/723203
[12] M. Asadi, H. Soleimani, S.M. Vaezpour, B.E. Rhoades, On-Stability of Picard Iteration in Cone Metric Spaces, Fixed Point Theory and Applications 2009 (1), 751090. doi:10.1155/2009/751090
[13] M. Asadi, S.M. Vaezpour, V. Rakočević, B. E. Rhoades, Fixed point theorems for contractive mapping in cone metric spaces Mathematical Communications 16 (1), 147-155, 2011. https://hrcak.srce.hr/file/102475
[14] M. Asadi, H. Soleimani, Some Fixed Point Results for Generalized Contractions in Partially Ordered Cone Metric Spaces, Journal of Nonlinear Analysis and Optimization: Theory and Applications 6 (1), 2015. http://www.math.sci.nu.ac.th
[15] M. Asadi, S.M. Vaezpour, H. Soleimani, Metrizability of cone metric spaces, arXiv preprint arXiv:1102.2353, 2011. https://doi.org/10.48550/arXiv.1102.2353 [16] H. Soleimani, S.M. Vaezpour, M. Asadi, B. Sims, Fixed Point and Endpoints Theorems for Set-Valued Contraction Maps in Cone Metric Spaces, Journal of Nonlinear and Convex Analysis 16 (12), 2015, 2499-2505.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Letters in Nonlinear Analysis and its Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.