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Abstract

In this paper, we introduce these two new classes of polynomial contractions in the setting of G-metric
spaces. Our results refine, generalize, and improve several corresponding results in the existing literature.
Some examples are presented to validate the originality and applicability of our main results.
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1. Introduction

It is commonly known that one of the most researched topics of nonlinear functional analysis nowadays is
fixed point theory, which focuses on the presence and uniqueness of fixed points. Banach [4] achieved the
first notable result in this subject to guarantee the existence and uniqueness of fixed points. Simply put,
each contraction mapping has a unique fixed point in a metric space. This outcome is known as the Banach
contraction principle. This subject is more important than ever since the Banach principle was originally
introduced because of the fixed point theory’s endless application potential in a variety of scientific domains,
including physics, chemistry, some parts of engineering, economics, and many areas of mathematics.
As a result, numerous authors have looked for further fixed point conclusions using the widely recognized

Banach principle and have successfully published new fixed point results that were developed by combining
or using two incredibly powerful methodologies. One way to do this is to replace the concept of a metric
space with a more universal space. Metric space generalizations that might be thought of as replacements
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include quasi-metric spaces, partial metric spaces, G-metric spaces, fuzzy metric spaces, b-metric spaces etc.
Mustafa and Sims [16] established G-metric spaces, which are among the most intriguing of any of these
spaces. Consequently, the idea of a G-metric space has garnered a lot of interest from scholars over the past
10 years, particularly from fixed point theorists [1], [3], [11], [14], [15], [17] and [20]. In 2012, Jleli and Samet
[9] noted that many fixed point theorems established in G-metric spaces were direct corollaries of existing
theorems in standard metric spaces. This realization dampened enthusiasm for further exploration of fixed
points in G-metric spaces. Recently, Jleli et al. [7] introduced groundbreaking developments in fixed point
theory within G-metric spaces. Their work offers novel versions of the Banach, Kannan, and Reich fixed
point theorems, significantly enhancing both the understanding and practical applications of fixed point
theory in this advanced mathematical context. The authors also highlighted that the approach used in [9]
was not applicable to their paper.

Changing the operator’s conditions is the second of these methods. That is, it involves investigating
specific conditions that lead to a fixed point being obtained from the contraction mapping. Very recently,
Jleli et al. [8] introduced the notions of polynomial and almost polynomial contractions on a metric space,
yielding some interesting results utilizing this technique.
In this paper, we aim to bring together the two previously mentioned topics: contractions of polynomial

type and G-metric spaces. We will define two classes of single-valued contractions of polynomial type in the
context ofG-metric spaces. Furthermore, we will establish fixed point results for these classes of contractions.
The results obtained will generalize those previously derived by Berinde [5], Jleli et al. [7], Jleli et al. [8],
Mustafa and Sims [16] and Perov [18], among others.
Throughout this paper, the following notations are used: R+ = [0,∞), X denotes a nonempty set, |X|

denotes the cardinal of X, and for a mapping T : X → X, the set of fixed points of T is denoted by Fix(T ).

2. Preliminaries

In this section, we review some fundamental ideas about G-metric spaces in brief. The readers can
refer to Mustafa and Sims [16] for more details. Throughout this paper, X denotes a nonempty set and
R+ = [0,∞).

Definition 2.1. [16] Let G : X ×X ×X → R+ be a given mapping. We say that G is a G-metric on X, if
for all x, y, z, w ∈ X, we have

(G1) G(x, y, z) = 0 if and only if x = y = z;

(G2) If x ̸= y, then G(x, x, y) > 0;

(G3) G(x, y, z) = G(σ(x, y, z)) for every permutation σ : {x, y, z} → {x, y, z};
(G4) If y ̸= z, then G(x, x, y) ≤ G(x, y, z);

(G5) G(x, y, z) ≤ G(x,w,w) +G(w, y, z).

If the preceding conditions are satisfied, then (X,G) is called a G-metric space.

Example 2.2. [16] Let (X, d) be a usual metric space, and define Gm and Gs on X ×X ×X → R+ by

G(x, y, z) = d(x, y) + d(y, z) + d(x, z), x, y, z ∈ X (1)

G(x, y, z) = max{d(x, y) + d(y, z) + d(x, z)}, x, y, z ∈ X (2)

Then, (X,Gm) and (X,Gs) are G-metric spaces.

Definition 2.3. [16] A G-metric space (X,G) is said to be symmetric if G(x, y, y) = G(y, x, x) for all
x, y ∈ X.

Definition 2.4. [16] Let (X,G) be a G-metric space. We say that {xn} is

(i) a G-Cauchy sequence if, for any ϵ > 0, there is N ∈ N (the set of all positive integers) such that for
all n,m, l ≥ N , G(xn, xm, xl) < ϵ;
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(ii) a G-convergent sequence to x ∈ X if, for any ϵ > 0, there is N ∈ N such that for all n,m ≥ N ,
G(x, xn, xm) < ϵ. A G-metric space (X,G) is said to be complete if every G-Cauchy sequence in X is
G-convergent in X.

Definition 2.5. [16] Let {xn} be a sequence in X and x ∈ X. We say that {xn} is G-convergent to x, if
limn,m→∞G(xn, xm, x) = 0. The following assertions are equivalent:

1. {xn} is G-convergent to x;

2. lim
n→∞

G(xn, xn, x) = 0;

3. lim
n→∞

G(xn, x, x) = 0.

Recently, the following interesting class of polynomial contractions were introduced by Jleli et al. [8]:

Definition 2.6. [16] Let (X, d) be a metric space and T : X → X be a given mapping. We say that T
is a polynomial contraction, if there exists λ ∈ (0, 1), a natural number k ≥ 1 and a family of mappings
ai : X ×X → [0,∞), i = 0, ..., k, such that

k∑
i=0

ai(Tx, Ty)d
i(Tx, Ty) ≤ λ

k∑
i=0

ai(x, y)d
i(x, y)

for every x, y ∈ X.

Theorem 2.7. [16] Let (X, d) be a complete metric space and T : X → X be a polynomial contraction.
Assume that the following conditions hold:

(i) T is continuous;

(ii) There exist j ∈ {1,−−−, k} and Aj > 0 such that

aj(x, y) ≥ Aj ,

x, y ∈ X.

Then, T admits a unique fixed point z∗ ∈ X. Moreover, for every z0 ∈ X, the Picard sequence {zn} ⊆ X
defined by zn+1 = Tzn for all n ≥ 0, converges to z∗.

3. Main Results

The following defines the class of polynomial contractions in G-metric space:

Definition 3.1. Let (X,G) be a G-metric space and T : X → X be a given mapping. We say that T
is a polynomial contraction if there exists α ∈ (0, 1), a natural number k ≥ 1 and a family of mappings
fi : X ×X ×X → [0,∞), i = 0, ..., k, such that for all pairwise distinct points x, y, z ∈ X, we have

k∑
i=0

fi(Tx, Ty, Tz)G
i(Tx, Ty, Tz) ≤ α

k∑
i=0

fi(x, y, z)G
i(x, y, z). (3)

Theorem 3.2. Let (X,G) be a complete G-metric space with |X| ≥ 3. Let T : X → X be a polynomial
contraction mapping. Assume that the following conditions hold:

(i) For all x ∈ X, T (Tx) ̸= x, provided Tx ̸= x;

(ii) There exists j ∈ {1, ..., k} and Fj > 0 such that

fj(x, y, z) ≥ Fj, x, y, z ∈ X.

Then, Fix(T ) ̸= ∅ and |Fix(T )| ≤ 2.
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Proof. Initially, we establish that Fix(T ) ̸= ∅. Suppose p0 ∈ X be fixed and {pn} ⊂ X be the Picard
sequence defined by

pn+1 = Tpn, n ≥ 0

The result is proved if pn = pn+1 for some n. Hence, we need to assume that

pn ̸= pn+1, n ≥ 0.

In view of condition (ii), we get pn ̸= pn+2(= T (Tpn)). Therefore, pn, pn+1 and pn+2 are pairwise distinct
points for every n ≥ 0. Making use of (3) with (x, y, z) = (p0, p1, p2), we obtain

k∑
i=0

fi(Tp0, Tp1, Tp2)G
i(Tp0, Tp1, Tp2) ≤ α

k∑
i=0

fi(p0, p1, p2)G
i(p0, p1, p2),

that is,

k∑
i=0

fi(p1, p2, p3)G
i(p1, p2, p3) ≤ α

k∑
i=0

fi(p0, p1, p2)G
i(p0, p1, p2), (4)

Again making use of the equation (3) with (x, y, z) = (p1, p2, p3), we infer

k∑
i=0

fi(Tp1, Tp2, Tp3)G
i(Tp1, Tp2, Tp3) ≤ α

k∑
i=0

fi(p1, p2, p3)G
i(p1, p2, p3),

which implies

k∑
i=0

fi(p2, p3, p4)G
i(p2, p3, p4) ≤ α

k∑
i=0

fi(p1, p2, p3)G
i(p1, p2, p3).

From Equation (4), we obtain that

k∑
i=0

fi(p2, p3, p4)G
i(p2, p3, p4) ≤ α2

k∑
i=0

fi(p0, p1, p2)G
i(p0, p1, p2).

Proceeding in the same manner, we derive through induction that

k∑
i=0

fi(pn, pn+1, pn+2)G
i(pn, pn+1, pn+2) ≤ αn

k∑
i=0

fi(p0, p1, p2)G
i(p0, p1, p2), n ≥ 0. (5)

As

fj(pn, pn+1, pn+2)G
j(pn, pn+1, pn+2) ≤

k∑
i=0

fi(pn, pn+1, pn+2)G
i(pn, pn+1, pn+2).

Considering (iii), we obtain that

FjG
j(pn, pn+1, pn+2) ≤

k∑
i=0

fi(pn, pn+1, pn+2)G
i(pn, pn+1, pn+2).

Now, from (5), we infer that

Gj(pn, pn+1, pn+2) ≤ αnδj,0, n ≥ 0, (6)

where

δj,0 = F−1
j

k∑
i=0

fi(p0, p1, p2)G
i(p0, p1, p2). (7)
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Now, we demonstrate that {pn} is G-Cauchy. From (G3), (G4) and using the fact that pn, pn+1 and pn+2

are pairwise distinct points, we obtain

G(pn, pn+1, pn+1) = G(pn+1, pn+1, pn)

≤ G(pn+1, pn, pn+2)

= G(pn, pn+1, pn+2).

Hence, in view of (6) we get

Gj(pn, pn+1, pn+1) ≤ αnδj,0, n ≥ 0. (8)

Utilizing (G5) and (8) to obtain for all n < m,

Gj(pn, pm, pm) ≤ G(pn, pn+1, pn+1) +G(pn+1, pm, pm)

≤ G(pn, pn+1, pn+1) +G(pn+1, pn+2, pn+2) +G(pn+2, pm, pm)

.

.

.

≤ G(pn, pn+1, pn+1) +G(pn+1, pn+2, pn+2) + ...+G(pm−1, pm, pm)

≤ δj,0(α
n + αn+1 + ...+ αn+m−1)

≤ δj,0
αn

1− α
,

which proves that as n,m → ∞,

G(pn, pm, pm) ≤ (
δj,0
1− α

)
1
j (α

1
j )n → 0.

This demonstrates that the sequence pn is Cauchy. Now, since (X,G) is complete, there must exist an
element p∗ ∈ X such that pn is G-convergent to p∗. However, this contradicts the idea that pn, pn+1, and
pn+2 are pairwise distinct points for every n if there is a k such that for all n ≥ k, we have pn = p∗. As
a result, we may derive a subsequence {pn(k)}k from {pn} such that, for every k, pn(k) ̸= p∗. We always
represent the sequence {pn(k)}k by pn with pn ̸= p∗ for all n, to make writing simpler. We now demonstrate
that p∗ is a member of Fix(T ). From (G3) and (G5), we have

Gj(p∗, p∗, Tp∗) ≤ Gj(p∗, pn, pn) +Gj(pn, p
∗, Tp∗)

= Gj(p∗, pn, pn) +Gj(p∗, pn, Tp
∗)

≤ Gj(p∗, pn, pn) +Gj(p∗, pn+1, pn+1) +Gj(pn+1, pn, Tp
∗)

= Gj(p∗, pn, pn) +Gj(p∗, pn+1, pn+1) +Gj(Tpn, Tpn−1, Tp
∗)

thereby implying in view of (3) and the fact that pn, pn−1 and p∗ are pairwise distinct points that

Gj(p∗, p∗, Tp∗) ≤ Gj(p∗, pn, pn) +Gj(p∗, pn+1, pn+1) +
k∑

i=0

fj(Tpn, Tpn−1, Tp
∗)Gj(Tpn, Tpn−1, Tp

∗)

≤ Gj(p∗, pn, pn) +Gj(p∗, pn+1, pn+1) + α
k∑

i=0

fj(pn, pn−1, p
∗)Gj(pn, pn−1, p

∗). (9)

By Definition 2.5, we get

lim
n→∞

[Gj(p∗, pn, pn) +Gj(p∗, pn+1, pn+1) + α
k∑

i=0

fj(pn, pn−1, p
∗)Gj(pn, pn−1, p

∗)] = 0.
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Using (9) and (G1), we get that G(p∗, p∗, Tp∗) = 0 and p∗ = Tp∗. This proves that Fix(T ) ̸= ∅.
Suppose now that qi, i = 1, 2, 3, are pairwise distinct fixed points of T . Then making use of (G1) and (3),
we obtain

k∑
i=0

fi(Tv1, T v2, T v3)G
i(Tv1, T v2, T v3) ≤ α

k∑
i=0

fi(v1, v2, v3)G
i(v1, v2, v3)

k∑
i=0

fi(v1, v2, v3)G
i(v1, v2, v3) ≤ α

k∑
i=0

fi(v1, v2, v3)G
i(v1, v2, v3). (10)

In view of Condition (ii), we have

k∑
i=0

fi(Tv1, T v2, T v3)G
i(Tv1, T v2, T v3) ≥ fj(v1, v2, v3)G

j(v1, v2, v3)

≥ FjG
j(v1, v2, v3).

Since Fj > 0 and G(v1, v2, v3) > 0, we get that

k∑
i=0

fi(Tv1, T v2, T v3)G
i(Tv1, T v2, T v3) > 0.

Now, dividing (10) by
∑k

i=0 fi(Tv1, T v2, T v3)G
i(Tv1, T v2, T v3), we arrive at a contradiction with α ∈ (0, 1).

So, we conclude that |Fix(T )| ≤ 2. Hence proved.

The following result is an immediate consequence of Theorem 3.2:

Corollary 3.3. Let (X,G) be a complete G-metric space and T : X → X be a given mapping. Assume that
there exists α ∈ (0, 1), a natural number k ≥ 1 and a finite sequence {fi}ki=1 ⊂ (0,∞) such that

k∑
i=1

fiG
i(Tx, Ty, Tz) ≤ α

k∑
i=1

fiG
i(x, y, z), (11)

for every x, y, z ∈ X. Then, T admits a unique fixed point p∗ ∈ X. Moreover, for every p0 ∈ X, the Picard
sequence {pn} ⊂ X defined by pn+1 = Tpn for all n ≥ 0, converges to p∗.

Remark 3.4. Observe that Corollary 3.3 recovers the main result of Jleli et al. [7]. Indeed, taking k = 1
and f1 = 1, the inequality (11) reduces to

G(Tx, Ty, Tz) ≤ αG(x, y, z).

Now, we provide an example demonstrating that condition (i) cannot be eliminated from the statement of
Theorem 3.2.

Example 3.5. Let X = {a, b, c, d} ⊆ R. Let us define the mappings T1, T2 : X → X defined by

T1a = a, T1b = c, T1c = d, T1d = a.

and

T2a = b, T2b = a, T2c = d, T2d = c.

Consider the G-metric on X given by

G(x, y, z) = d(x, y) + d(y, z) + d(z, x),

where x, y, z ∈ X and d is the discrete metric on X. Let the mapping f0 : X ×X ×X → [0,∞) defined by



Priya Shahi, Lett. Nonlinear Anal. Appl. 2 (2024), 138-148 144

f0(a, b, c) = f0(a, c, b) = f0(b, a, c) = f0(b, c, a) = f0(c, a, b) = f0(c, b, a)
f0(a, b, c) = 7, f0(a, c, d) = 1, f0(c, d, a) = 2, f0(b, c, d) = 8,

f0(d, a, b) = 17, f0(b, d, c) = 7, f0(a, c, b) = 9, f0(c, a, d) = 2, f0(d, b, a) = 3, f0(b, a, d) = 1.

It can be easily verified that

f0(Tx, Ty, Tz) +G(Tx, Ty, Tz) ≤ 1

2
(f0(x, y, z) +G(x, y, z) (12)

for every x, y, z ∈ X, that is, T is a polynomial contraction in the given G-metric space with k = 1,
f1 ≡ 1 and α = 12. All the conditions of Theorem 3.2 are satisfied ((ii) is satisfied with F1 = 1). Also,
Fix(T1) = {a}. On the other hand, the mapping T2 satisfies the inequality (3) for all x, y, z ∈ X. But, we
have T2a ̸= a and T2(T2a) = T2b = a, which proves that condition (i) of the Theorem 3.2 is not satisfied.
Also, we have Fix(T2) = ∅, which shows that in the absence of Condition (i), the result of Theorem 3.2 is
not true.

Remark 3.6. Since in the above example,

G(T1a, T1b, T1c)

G(a, b, c)
=

G(a, c, d)

G(a, b, c)
= 1.

Therefore, Banach’s fixed point theorem in G-metric spaces proved by Jleli et al. [7] is not applicable.

We provide here the class of almost polynomial contractions in the setting of G-metric spaces, inspired by
Berinde [5].

Definition 3.7. Let (X,G) be a G-metric space and T : X → X be a given mapping. We say that T
is an almost polynomial contraction, if there exists α ∈ (0, 1), a natural number k ≥ 1, finite sequences
{Si}ki=0, Ti}ki=0 ⊂ (0,∞) and a family of mappings fi : X ×X ×X → [0,∞), i = 0, 1, ..., k, such that for all
pairwise distinct points x, y, z ∈ X, we have

k∑
i=0

fi(Tx, Ty, Tz)G
i(Tx, Ty, Tz) ≤ α

k∑
i=0

fi(x, y, z)[G
i(x, y, z) + SiG

i(y, y, Tx) + TiG
i(z, z, Ty)] (13)

Theorem 3.8. Let (X,G) be a complete G-metric space with |X| ≥ 3. Let T : X → X be an almost
polynomial contraction mapping. Assume that the following conditions hold:

(i) For all x ∈ X, T (Tx) ̸= x, provided Tx ̸= x;

(ii) There exists j ∈ {1, ..., k} and Fj > 0 such that

fj(x, y, z) ≥ Fj, x, y, z ∈ X.

Then, Fix(T ) ̸= ∅.

Proof. Assume p0 ∈ X be fixed and {pn} ⊆ X be the Picard sequence defined by

pn+1 = Tpn, n ≥ 0.

Utilizing (13) with (x, y, z) = (p0, p1, p2), we get

k∑
i=0

fi(Tp0, Tp1, Tp2)G
i(Tp0, Tp1, Tp2) ≥ α

k∑
i=0

fi(p0, p1, p2)[G
i(p0, p1, p2) + SiG

i(p2, p2, Tp1)]

that is,

k∑
i=0

fi(p1, p2, p3)G
i(p1, p2, p3) ≤ α

k∑
i=0

fi(p0, p1, p2)[G
i(p0, p1, p2) + SiG

i(p2, p2, p2)],

≤ α
k∑

i=0

fi(p0, p1, p2)[G
i(p0, p1, p2) (14)
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Once again, applying inequality (13) with (x, y, z) = (p1, p2, p3), and considering equation (14), we obtain

k∑
i=0

fi(Tp1, Tp2, Tp3)G
i(Tp1, Tp2, Tp3) ≤ α

k∑
i=0

fi(p1, p2, p3)[G
i(p1, p2, p3) + SiG

i(p3, p3, Tp2)]

≤ α2
k∑

i=0

fi(p0, p1, p2)G
i(p0, p1, p2)

Following this procedure, we learn through induction that

k∑
i=0

fi(pn, pn+1, pn+2)G
i(pn, pn+1, pn+2) ≤ αn

k∑
i=0

fi(p0, p1, p2)G
i(p0, p1, p2), n ≥ 0.

owing to (ii) we get

Gj(pn, pn+1, pn+2) ≤ αnσj,0, n ≥ 0,

where σj,0 is provided by (7). Next, by following the steps in the Theorem 3.2 proof, we can determine that
{zn} is a Cauchy sequence and the following inequality holds:

Gj(p∗, p∗, Tp∗) ≤ Gj(p∗, pn, pn) +Gj(p∗, pn+1, pn+1) +Gj(Tpn, Tpn−1, Tp
∗)

In view of condition that pn, pn−1 and p∗ are pairwise distinct points and from (3.7), we obtain that

Gj(p∗, p∗, Tp∗) ≤ Gj(p∗, pn, pn) +Gj(p∗, pn+1, pn+1) +
k∑

i=0

fj(Tpn, Tpn−1, Tp
∗)Gj(Tpn, Tpn−1, Tp

∗)

≤ Gj(p∗, pn, pn) +Gj(p∗, pn+1, pn+1) + α
k∑

i=0

fj(pn, pn−1, p
∗)[Gj(pn, pn−1, p

∗)

+SiG
j(pn−1, pn−1, Tpn) + TiG

j(p∗, p∗, Tpn−1)]. (15)

The Definition of G-convergence and Definition 2.5 implies that

lim
n→∞

[Gj(p∗, pn, pn) +Gj(p∗, pn+1, pn+1) + α

k∑
i=0

fj(pn, pn−1, p
∗)[Gj(pn, pn−1, p

∗)

+SiG
j(pn−1, pn−1, Tpn) + TiG

j(p∗, p∗, Tpn−1)]] = 0.

Utilizing the above inequality and (G1), we infer that G(p∗, p∗, Tp∗) = 0 and p∗ = Tp∗. Hence, we proved
that Fix(T ) ̸= ∅.

Now, we show an example that illustrates Theorem 3.8.

Example 3.9. Let X = [0, 1] and T : X → X be the mapping defined by

T (x) =

{
1
8 if 0 ≤ x < 1,

0 if x = 1.

Let G be the metric defined by

G(x, y, z) = d(x, y) + d(y, z) + d(x, z),

where x, y, z ∈ X and d be the standard metric on X. Let us define the mapping f0 : X ×X ×X → [0,∞)
by

f0(x, y, z) =

∣∣∣∣6x2 − 5x+
17

32

∣∣∣∣+ ∣∣∣∣6y2 − 5y +
17

32

∣∣∣∣+ ∣∣∣∣6z2 − 5z +
17

32

∣∣∣∣ ,
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x, y, z ∈ X. Now, we prove that T is an almost polynomial contraction in G-metric spaces with k = 1,
f1 ≡ 1, S0 = S1 = 1, T0 = T1 = 2 and α = 1

4 . Putting these values in Definition 3.7, we obtain

f0(Tx, Ty, Tz) +G(Tx, Ty, Tz) ≤ 1

4
(4f0(x, y, z) +G(x, y, z) +G(y, y, Tx) + 2G(z, z, Ty)) (16)

There will be following six cases:
Case 1: 0 ≤ x, y, z < 1. Here, we have

f0(Tx, Ty, Tz) +G(Tx, Ty, Tz) = 0

Hence, equation (16) holds.
Case 2: 0 ≤ x, y < 1, z = 1

f0(Tx, Ty, Tz) +G(Tx, Ty, Tz) =
17

32
+

1

4
=

25

32
≤ G(z, z, Ty)

=
7

4

≤ 1

4
(4f0(x, y, z) +G(x, y, z) +G(y, y, Tx) + 2G(z, z, Ty))

Hence, equation (16) holds.
Case 3: 0 ≤ x, z < 1, y = 1

f0(Tx, Ty, Tz) +G(Tx, Ty, Tz) =
17

32
+

1

4
=

25

32
≤ G(y, y, Tx)

=
7

4

≤ 1

4
(4f0(x, y, z) +G(x, y, z) +G(y, y, Tx) + 2G(z, z, Ty))

Hence, equation (16) holds.
Case 4: 0 ≤ y, z < 1, x = 1

f0(Tx, Ty, Tz) +G(Tx, Ty, Tz) =
17

32
+

1

4
=

25

32

≤ 49

32

=
1

4
[4f0(x, y, z)]

≤ 1

4
(4f0(x, y, z) +G(x, y, z) +G(y, y, Tx) + 2G(z, z, Ty))

Hence, equation (16) holds.
Therefore, equation (16) holds for all x, y, z ∈ X. Also, condition (i) of Theorem 3.8 is clearly satisfied.
Regarding condition (ii), it is valid for j = 1 and F1 = 1. Consequently, Theorem 3.8 holds. Clearly, p = 1

8
is a fixed point of T .

By taking f0 ≡ 0 and fi is constant for all i ∈ {1, 2, ..., k}, we deduce the following result from Theorem 3.8:

Corollary 3.10. Let (X,G) be a complete G-metric space with |X| ≥ 3. Let T : X → X be a given mapping.
Assume that the following conditions hold:

(i) For all x ∈ X, T (Tx) ̸= x, provided Tx ̸= x;
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(ii) there exists α ∈ (0, 1), a natural number k ≥ 1 and three finite sequences {fi}ki=1, {Si}ki=1 and {Ti}ki=1 ⊆
(0,∞) such that

k∑
i=1

fiG
i(Tx, Ty, Tz) ≤ α

k∑
i=1

fi[G
i(x, y, z) + SiG

i(y, y, Tx) + TiG
i(z, z, Ty)]

Then Fix(T ) ̸= ∅.

We now introduce a version of Berinde’s Theorem within the framework of G-metric spaces.

Corollary 3.11. Let (X,G) be a complete G-metric space with |X| ≥ 3. Let T : X → X be a given mapping.
Assume that the following conditions hold:

(i) For all x ∈ X, T (Tx) ̸= x, provided Tx ̸= x;

(ii) there exists α ∈ (0, 1), a natural number k ≥ 1 and three finite sequences {fi}ki=1, {Si}ki=1 and {Ti}ki=1 ⊆
(0,∞) such that

G(Tx, Ty, Tz) ≤ α[G(x, y, z) + lG(y, y, Tx) +mG(z, z, Ty)]

Then Fix(T ) ̸= ∅ and |Fix(T )| ≤ 2.

Proof. By choosing k = 1, f1 = 1, S1 = l, and T1 = m, with l,m > 0, we obtain the required proof.

In 2023, a very interesting class of mappings were introduced by Perov [18] which can be identified as
mappings contracting perimeters of triangles.

Definition 3.12. (Perov [18]) Let (X, d) be a metric space with |X| ≥ 3. We shall say that T : X → X is
a mapping contracting perimeters of triangles on X, if there exists λ ∈ (0, 1) such that the inequality

d(Tx, Ty) + d(Ty, Tz) + T (Tz, Tx) ≤ λ[d(x, y) + d(y, z) + d(z, x)], (17)

holds for all three pairwise distinct points x, y, z ∈ X.

The following outcome attributed to Petrov [18] is a direct outcome of our Theorem 3.2.

Corollary 3.13. Let (X, d), |X| ≥ 3, be a complete metric space and let the mapping T : X → X satisfies
the following two conditions:

(I) For all x ∈ X, T (Tx) ̸= x, provided Tx ̸= x;

(II) T is a mapping contracting perimeters of triangles on X.

Then, Fix(T ) ̸= ∅ and |Fix(T )| ≤ 2.

4. Conclusion

Recently, Jleli et al. [8] introduced two novel classes of single-valued contractions of polynomial type in
metric spaces. Inspired by their work, this paper presents two new classes of single-valued contractions of
polynomial type within the framework of G-metric spaces. Motivated by the advancements in fixed point
theory in G-metric spaces by Jleli et al. [7], we have extended and generalized the existing results to this
setting. Our findings broaden the scope of the results established by Jleli et al. [7], Jleli et al. [8] and Perov
[18]. Future research could explore potential applications of these generalized results.
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