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Abstract

In this paper, we analyze fixed points of order preserving contractions on ordered metric spaces. Fixed point
property of such maps is characterized for bounded convex subsets of the Euclidean plane.
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1. Introduction

Let X = [0, 1)∪ (2, 3]. There exist fixed-point-free contractions of X into X, and there exist fixed-point-
free order preserving mappings of X into X; but every mapping on X that is both a contraction and order
preserving has a fixed point. This paper identifies subsets of a partially ordered metric space on which every
order preserving contraction has a fixed point.

Fixed point theorems were first introduced in topological spaces for continuous functions and it is now
developed as a separate branch of mathematics. Existence of fixed points is of significant importance and
over the past 50 years, it has been revealed as a very powerful and important tool in the study of nonlinear
mathematical structures. Fixed point property for continuous functions on topological spaces, contractions
on metric spaces and order preserving functions on ordered sets have been separately investigated by many
researchers ([1, 3, 9, 10]). Many applications exist for theorems on sets X and functions f : X → X if f is
either a continuous function on the topological space X or if f is a contraction on the metric space X or if
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f is order preserving on the partially ordered set X. Fixed points of order preserving continuous functions
on ordered metric spaces have been investigated by [2, 5, 7, 8].

In order to distinguish between various fixed point properties on different mathematical structures, we use
the following terminologies. If every order preserving function on a partially ordered set X fixes a point, then
we say that X has the order fixed point property or in short order-FPP. If every contraction on a metric space
X fixes a point, then we say that X has the contraction fixed point property or in short contraction-FPP.

Two elements x, y in a poset (P,≤) are said to be comparable if either x ≤ y or y ≤ x. If C is a subset of
P and any two elements of C are comparable, then C is called a chain. If every non-empty chain of P has
both supremum and infimum in P , then we say that P is doubly chain-complete. X = (X, d,≤) is called an
ordered metric space if (X, d) is a metric space and (X,≤) is a partially ordered set.

2. FPP for order preserving contractions on ordered metric spaces

We now introduce a new type of fixed point property for ordered metric spaces as follows.

Definition 2.1. Let X be an ordered metric space. If every order preserving contraction f : X → X has a
fixed point, then X is said to have the crop fixed point property; in short crop-FPP. An order preserving
contraction f : X → X that does not fix any point is called a crop fixed-point-free map.

Example 2.2. Let X = [0, 1) ∪ (2, 3].
Then X does not have the order-FPP as g : X → X defined by

g(x) =

{
x+1
2 if x ∈ [0, 1)

x+2
2 if x ∈ (2, 3].

is an order preserving map that does not fix any element of X.

Further, the map h : X → X defined by

h(x) =

{
x+1
2 if x ∈ [0, 1)

4−x
2 if x ∈ (2, 3].

is a contraction that does not fix any element of X. Thus X does not have the contraction-FPP.

Let f : X → X be any order preserving contraction, with contraction constant α.
For ε > 0, sufficiently small 1− ε and 2 + ε are in X.

|f(2 + ε)− f(1− ε)| ≤ α|(2 + ε)− (1− ε)|
≤ α(1 + 2ε)

< 1 for ε sufficiently small

Thus either both f(1−ε) and f(2+ε) are in [0, 1) or in (2, 3], say the first. Since both [0, 1) and (2, 3]
are connected and f : X → X is continuous, we have f(X) ⊆ [0, 1).

Thus the order preserving contraction f takes [0, f(3)] to itself and hence by Tarski’s theorem [10] (or
by Banach’s contraction principle [1]), f fixes an element of X. Thus X has the crop-FPP.

Hence X has neither the order-FPP nor the contraction-FPP, but has the crop-FPP.

Definition 2.3 ([4]). Let (X, d1) and (Y, d2) be two metric spaces. A function f : X → Y is called a
similitude if there exists r > 0 such that d2(f(x), f(y)) = r.d1(x, y) ∀x, y ∈ X. In this case, we say that X
and Y are similar.

Definition 2.4. Two ordered metric spaces X and Y are isotonically similar if there exists an order pre-
serving (isotone) similitude map f from X onto Y .
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Theorem 2.5. Let X and Y be isotonically similar ordered metric spaces. Then X has the crop-FPP if and
only if Y has the crop-FPP.

Proof. Let f : X → Y be an onto map that is both order preserving and similitude. Suppose X has the
crop-FPP. Let g : Y → Y be any order preserving contraction, with contraction constant α. Since f is a
similitude it is one-one and hence f is bijective. Thus f−1 is also an order preserving similitude. Hence
f−1 ◦ g ◦ f is an order preserving contraction on X with contraction constant α. Since X has the crop-FPP,
there exists x ∈ X such that f−1◦g◦f(x) = x. But then g(f(x)) = f(x) so that g fixes the element f(x) ∈ Y .
This proves that Y has the crop-FPP. On the other hand, crop-FPP of X follows from the crop-FPP of Y
as isotonically similar is an equivalence relation.

Definition 2.6. Let (X, d,≤) be an ordered metric space. An order preserving map r : X → X is called
a crop-retraction if d(r(x), r(y)) ≤ d(x, y) for all x, y ∈ X and r ◦ r = r. In this case r(X) is called a
crop-retract of X.

Theorem 2.7. If X has the crop-FPP, then every crop-retract of X has the crop-FPP.

Proof. Let S be a crop-retract of X. Then there exists a crop-retraction r : X → X such that r(X) = S. Let
g : S → S be any order preserving contraction. Then g ◦ r : X → X is an order preserving contraction. By
the assumption, there exists an element x0 ∈ X such that g ◦ r(x0) = x0. As x0 = g(r(x0)) ∈ S, r(x0) = x0
so that g(x0) = x0. This proves that S has the crop-FPP.

3. crop-FPP for Subsets of Euclidean space

The Euclidean space Rn is the most simple ordered metric space, which is induced with the usual metric
and point-wise ordering. We shall now analyze crop-FPP for convex subsets of R and R2; a subset X of Rn

is convex in the sense that for every pair x, y ∈ X, the line segment joining x and y lies in X.

Lemma 3.1. Let C be any convex subset of Rn and c ∈ C. Then C − {c} does not have the crop-FPP

Proof. The map f : C − {c} → C − {c} defined by f(x) =
1

2
(x+ c) is an order preserving contraction, that

does not fix any element of C − {c}. This proves that C − {c} does not have the crop-FPP.

3.1. crop-FPP for subsets of the real line R
.

The following two theorems characterize crop-FPP for convex subsets of the real line.

Theorem 3.2. A convex set P in R has the crop-FPP if and only if P is a closed set.

Proof. If P is closed, then it is complete and hence by contraction principle, P has the contraction-FPP.
Thus P has the crop-FPP. Conversely, if P is not closed, then there is a limit point a of P that does not lie
in P . In this case P ∪ {a} is convex and hence by Lemma 3.1, P does not have the crop-FPP.

For a bounded convex set P in R, crop-FPP and order-FPP coincide.

Theorem 3.3. A convex subset P of the real line R has the order-FPP if and only if P is bounded and has
the crop-FPP.
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Proof. It follows from the definition that order-FPP implies crop-FPP. If P is not bounded, say not bounded
above, then P contains an interval of the form [a, ∞). Then the map f : P → P defined by

f(x) =

{
a if x < a;
x+ 1 if x ≥ a.

is a fixed point free order preserving map. Conversely, suppose that P is bounded and has the crop-FPP. If
there is a fixed point free order preserving map on P , then by Tarski’s theorem [10], P is not order-complete.
Since P is bounded, either P has no maximum or P has no minimum, say no maximum. If a = supP in R,
then P ∪ {a} is convex and hence by Lemma 3.1, P does not have the crop-FPP, a contradiction.

The above result doesn’t hold if P is not convex. For example, P = [0, 1)
⋃
(2, 3] is bounded and has

the crop-FPP; but does not have the order-FPP.

3.2. crop-FPP for subsets of R2

.

Notation: For any X ⊆ R2, denote, int(X)= interior of X, X = closure of X and bd(X) = boundary of X.
For any a, b ∈ R2, denote a ∨ b = sup{a, b} and a ∧ b = inf{a, b}
[a, b] = {x ∈ R2; a ≤ x ≤ b}

In this section, we characterize crop-FPP for bounded convex subsets of R2. Through out this section,
P denotes a bounded convex subset of R2, g = (g1, g2) = inf P in R2 and l = (l1, l2) = supP in R2.

Lemma 3.4. If P has the crop-FPP, then bd(P )
⋂
int([g, l]) ⊆ P .

Proof. The conclusion holds for any line segment in R2. Thus we may assume that int(P ) ̸= ∅.

Figure 1

We may split bd(P )
⋂
int([g, l]) into four components C1, C2, C3 and C4 as shown in the Figure 1. (There

are cases with fewer components, but the argument is same.) More precisely C1 is the set of all minimal
elements of P inside int([g, l]) and C3 is the set of all maximal elements of P inside int([g, l]) in the usual
componentwise order. Similarly C2 is the set of all minimal elements of P inside int([g, l]) and C4 is the set
of all maximal elements of P inside int([g, l]) in the order ≤′ on R2 defined by (x1, x2) ≤′ (y1, y2) if x1 ≥ y1
and x2 ≤ y2.

Suppose there is a point x ∈ C1 that is not in P . Choose y ∈ P close to x with x ≤ y so that
[x, y] − {x} ⊆ P . The best approximation f1 of P onto the closed rectangle [x, y] (See Figure 2) is a
crop-retraction with crop-retract [x, y]−{x}. By Lemma 3.1, [x, y]−{x} does not have the crop-FPP and
hence by Theorem 2.7, P does not have the crop-FPP, a contradiction to our assumption. Thus C1 ⊆ P .
Similarly C3 ⊆ P .

Suppose there is point x = (x1, x2) ∈ C2 that is not in P . Choose a point y = (y1, y2) ∈ P with y1 < x1
and x2 < y2 so that [x∧ y, x∨ y]−{x} ⊆ P . As in the above case, the best approximation f2 of P onto the
closed rectangle [x ∧ y, x ∨ y] (See Figure 3) is a crop-retraction, with crop-retract [x ∧ y, x ∨ y]− {x}. By
Lemma 3.1, [x ∧ y, x ∨ y] − {x} does not have the crop-FPP and hence by Theorem 2.7, P does not have
the crop-FPP, contradicting our assumption. Thus C2 ⊆ P . Similarly C4 ⊆ P .

This proves the Lemma.
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Figure 2

Figure 3

Lemma 3.5. If P has the crop-FPP, then P is doubly chain-complete and each element p ∈ P is comparable
to some element of P .

Proof. If P is not doubly chain-complete, then P contains a non-empty chain C that does not have a
supremum or infimum in P , say no supremum. Let u = (u1, u2) = supR2 C. If u ∈ P , then u = supP C, a
contradiction. Hence u /∈ P so that u ∈ bd(P ). By Lemma 3.4, u ∈ bd([g, l]), which consists of four line
segments as shown in Figure 4.

Figure 4

Case I: g1 ≤ u1 < l1 and u2 = g2
Case II: u1 = l1 and g2 ≤ u2 ≤ l2
Case III: g1 ≤ u1 ≤ l1 and u2 = l2
Case IV: u1 = g1 and g2 ≤ u2 < l2

Since u = supP C, in Case I and Case IV, P ∪ {u} is convex and hence by Lemma 3.1, P does not have the
crop-FPP, a contradiction.

In Case II, denote S = {x ∈ P ;x ≥ u}. If S ̸= ∅, then v = (v1, v2) = infR2 S /∈ P . In this case, P ∪ {v} is
convex and hence by Lemma 3.1, P does not have the crop-FPP, a contradiction. Thus S = ∅. If u = (l1, g2),
then P ∪ {u} is convex and hence by Lemma 3.1, P does not have the crop-FPP, a contradiction. Hence
g2 < u2. Choose a point p = (p1, p2) ∈ P such that p1 < u1 and p2 < u2. Let m be the slope of the
line L passing through p and u. Let h1 be the map that projects all points in P above the line vertically
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to line L and all other points perpendicularly to L as shown in Figure 5. Then h1 is order preserving and
d(h1(x), h1(y)) ≤

√
m2 + 1 d(x, y) ∀ x, y ∈ P . Let h2 : L → L be defined by

h2((1− t)p+ tu) =

{
1

2
√
m2+1

p+ (1− 1
2
√
m2+1

)u if t ≤ 0

(1− t)[ 1
2
√
m2+1

p+ (1− 1
2
√
m2+1

)u] + tu if t > 0

Figure 5

Then h2 is order preserving and d(h2(x), h2(y)) ≤ 1
2
√
m2+1

d(x, y)∀x, y ∈ L.
The composite map h = h2 ◦ h1 is an order preserving map on P with contraction constant 1

2 , which
does not fix any point of P , a contradiction to our assumption. Thus Case II does not arise. By similar
arguments, it follows that Case III also does not arise.

This shows that P is doubly chain-complete.

To show the second part, if p ∈ P and there are no points x ∈ P satisfying x ≤ p or x ≥ p, then by
Lemma 3.4, p ∈ bd([g, l]). But then P ∪ {p} is convex and hence by Lemma 3.1, P does not have the
crop-FPP, a contradiction. This completes the proof.

Lemma 3.6. If P is doubly chain-complete and each p ∈ P is comparable to some element of P , then P has
the crop-FPP.

Proof. Let f : P → P be an order preserving contraction. For any x ∈ P , the sequence {fn(x)} is a cauchy
sequence and hence it converges to a point u = (u1, u2) ∈ R2. As f is a contraction, the point u is indepen-
dent of the choice of x.

Suppose u /∈ P .

Claim: There is an element y ∈ P which is comparable to fm(y) for some natural number m.
If there is an element x = (x1, x2) ∈ P such that x1 < u1 and x2 < u2, then as fn(x) converges to u,

for ϵ = min{u1 − x1, u2 − x2}, there exists m ∈ N such that d(fm(x), u) < ϵ so that fm(x) ≤ x. Similarly if
there is an element x = (x1, x2) ∈ P such that u1 < x1 and u2 < x2, then x ≤ fm(x) for some m ∈ N

Since u /∈ P and P is connected, we are left with two cases, namely u = (l1, g2) or u = (g1, l2). Suppose
u = (l1, g2). Since u ∈ P , there exists x ∈ P such that x ≤ u or u ≤ x. If x ≤ u, then C = {x ∈ P ;x ≤ u} is
a chain and hence it has a supremum in P , call it v. If u = supR2 C, then u < v. Otherwise v < u. Similarly,
when u ≤ x, there exists v ∈ P such that u < v or v < u. Since {fn(v)} converges to u, v is comparable to
fm(v) for m sufficiently large.
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Similarly, when u = (g1, l2), we can find v ∈ P such that v is comparable to fm(v) for some m ∈ N. This
proves the claim.

Since P is doubly chain-complete and y ∼ fm(y), by Theorem 9 in [6], the order preserving map,
fm : P → P has a fixed point, say fm(x0) = x0. The sequence {fn(x0)} converges to u and its subsequence
{(fm)n(x0)} converges to x0. Thus u = x0 ∈ P , a contradiction.

Thus we conclude that u ∈ P and hence f(u) = u. This completes the proof of the lemma.

From Lemma 3.5 and Lemma 3.6, we get the following main theorem of this section.

Theorem 3.7. A bounded convex subset P of R2 has the crop-FPP if and only if P is doubly chain-complete
and each element p ∈ P is comparable to some element of P .

Example 3.8. Let D = {(x, y) ∈ R2;x2 + y2 ≤ 1}, the unit closed disk and
I = {(x, y) ∈ R2; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, the unit square.
Then both D and I are complete and hence they have the crop-FPP.

If any portion of the boundary of D is removed, then the resulting convex set fails to have the crop-
FPP as it is not chain-complete. This is not the case with I. It depends on the points removed. In fact
{(x, y) ∈ R2; 0 < x < 1, 0 < y < 1} ∪ {(0, 0), (1, 1)} has the crop-FPP, where as {(x, y) ∈ R2; 0 < x < 1, 0 <
y < 1} ∪ {(1, 0), (0, 1)} does not have the crop-FPP.

Remark 3.9. Double chain-completeness alone does not guarantee the crop-FPP. In fact the set {(t, 1−t); 0 <
t < 1} is doubly chain-complete but does not have the crop-FPP.
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