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Abstract

The primary objective of this paper is to establish the existence of coincidence points and common fixed
points for an even number of self-mappings defined on cone Banach spaces under the framework of weak
compatibility. By employing an ordered structure and suitable contractive conditions, we present general
fixed point results that extend and unify several known theorems in the existing literature. Specifically,
Corollaries 3.2, 3.3 and 3.4 address the existence of coincidence and common fixed points for eight, six, and
four self-mappings, respectively. Our findings contribute to the ongoing development of fixed point theory in
cone metric spaces, offering broad generalizations and encompassing a wide range of previously established
results as special cases.
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1. Introduction

The theory of fixed points has emerged as a fundamental area of mathematical analysis due to its extensive
applications in various fields such as differential equations, optimization, and dynamic systems. In recent
years, the concept of cone metric spaces, as introduced by Huang and Zhang [4], has provided a fruitful
generalization of classical metric spaces by replacing the range of the metric with an ordered Banach space.
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This extension enables a more flexible framework to explore fixed point theorems, especially in the absence
of continuity or commutativity assumptions.

Following this pioneering work, numerous researchers have investigated the existence and uniqueness of
fixed points in cone metric and cone Banach spaces under various contractive conditions. Abbas and Jungck
[1] initiated an important line of inquiry by establishing common fixed point results for noncommuting
mappings without the assumption of continuity. Subsequent studies have deepened and broadened this
framework. For instance, Karapinar [5] and Abdeljawad et al. [2] explored fixed point theorems in cone
Banach spaces, contributing significantly to the development of the theory with generalized contraction
conditions.

Further advancements were made by Gujetiya et al. [3], who studied compatible mappings, and by Tiwari
and Shukla [3], who addressed coincidence and common fixed points within cone Banach space. Sarkar and
Tiwary [7] introduced results concerning weakly compatible mappings, while Varghese and Dersanambika [8]
offered refinements that underscore the importance of topological structure in determining the existence of
fixed points.

This expanding field of research demonstrates significant potential for broad application and further
development. Inspired by these advancements, this paper seeks to establish new common fixed point results
for N self-mappings under specific conditions within cone Banach spaces, thereby enhancing the theoretical
foundation of fixed point theory and its applications.

2. Preliminaries

In this section, we outline key definitions and preliminary results that support the development of our
main work. These foundational concepts are essential for building the theoretical framework and ensuring a
clear understanding of the results presented in the later sections.

Definition 2.1. [8] Let E be a real Banach space and let K ⊂ E. The set K is said to be a cone if it
satisfies the following conditions:

1. K is nonempty, closed, and K ̸= {0}.
2. For all x, y ∈ K and for all scalars a, b ≥ 0, the linear combination ax+ by ∈ K.
3. If x ∈ K and −x ∈ K, then x = 0; in other words, K ∩ (−K) = {0}.

Given a cone K ⊂ E, we can define a partial ordering ≤ on E by stating that x ≤ y if and only if
y − x ∈ K. Furthermore, we write x < y when y − x ∈ intK, where intK denotes the interior of K.

Now, let X be a nonempty set and K ⊂ E as above. A function d : X ×X → E is called a cone metric
if it satisfies the following properties:

1. d(x, y) ∈ K for all x, y ∈ X, and d(x, y) = 0 if and only if x = y.
2. d(x, y) = d(y, x) for all x, y ∈ X.
3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

A pair (X, d), where d is a cone metric, is referred to as a cone metric space.

Definition 2.2. [5] Let E be a real Banach space and let K ⊂ E be a cone with int(K) ̸= ϕ. A mapping
∥ · ∥ : X → E defined on a real linear space X is called a cone norm if it satisfies the following conditions for
all x, y ∈ X and α ∈ R:

(i) ∥x∥ ≥ θ in E, and ∥x∥ = θ if and only if x = 0,
(ii) ∥αx∥ = |α| ∥x∥,
(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥,

where “≥” and “≤” denote the partial ordering induced by the cone K, and θ is the zero element of E.
The pair (X, ∥ · ∥) is then called a cone normed linear space.
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Definition 2.3. [5] Let (X, ∥ · ∥) be a cone normed space, where x ∈ X and {xn} is a sequence in X. Then
we define the following concepts:

(a) The sequence {xn} is said to converge to x ∈ X if, for every element c ∈ E with 0 ≪ c, there exists a
natural number N1 such that ∥xn − x∥ ≪ c for all n > N1. This is denoted by lim

n→∞
xn = x or xn → x.

(b) The sequence {xn} is called a Cauchy sequence if, for every c ∈ E with 0 ≪ c, there exists a natural
number N1 such that ∥xn − xm∥ ≪ c for all n,m ≥ N1.

(c) The cone normed space (X, ∥ · ∥) is said to be complete if every Cauchy sequence in X converges to a
point in X; that is, every Cauchy sequence has a limit in X.

A complete cone normed space is called a cone Banach space.

Definition 2.4. [7] Let (X, ∥ · ∥) be a cone normed space. Two self-mappings A1 and A2 on X are said to
be compatible if, for every sequence {xn} in X satisfying

lim
n→∞

A1xn = lim
n→∞

A2xn = x for some x ∈ X,

it follows that
lim
n→∞

∥A1A2xn −A2A1xn∥ = 0.

Definition 2.5. [7] Two maps A1 and A2 are called commuting if A1A2x = A2A1x for all x ∈ X.

Definition 2.6. [8] Let A1 and A2 be two self maps on a set X, if A1x = A2x for some x in X then x is
called coincidence point of A1 and A2.

Definition 2.7. [7] Let A1 and A2 be self-maps on a cone normed space (X, ∥ · ∥). The mappings A1 and
A2 are said to be weakly compatible if they commute at their point of coincidence; that is, if there exists
x ∈ X such that A1x = A2x, then it follows that

A1A2x = A2A1x.

3. Main Results

In this section, we present fixed point theorems for an even number of self-mappings in cone Banach
spaces. These results extend and generalize the findings of [7] and related works. Our theorems contribute to
the broader understanding of fixed point theory by offering new insights and conditions under which common
fixed points exist in the framework of cone Banach spaces.

Theorem 3.1. Let (X, ||.||) be a cone Banach space and d : X ×X → E with d(x, y) = ||x − y||. Let A1,
A2, . . . , AN be N self mappings on X, where N is an even number, satisfying the following conditions:

(a) AN (X) ⊆ A1A2 . . . AN
2
−1(X) and AN−1(X) ⊆ AN

2
AN

2
+1 . . . AN−2(X)

(b) a||AN−1x−AN (y)||+ b
{
||A1A2 . . . AN

2
−1x−AN−1(x)||+ ||AN

2
AN

2
+1 . . . AN−2y −AN (y)||

}
+ c

{
||AN

2
AN

2
+1 . . . AN−2(y)−AN−1x||+ ||A1A2 . . . AN

2
−1x−AN (y)||

}
≤ r||A1A2 . . . AN

2
−1x−AN

2
AN

2
+1 . . . AN−2y|| (1)

for all x, y ∈ X, 0 ≤ r < a+ 2b+ 3c, a+ b+ c ̸= 0, r ̸= a+ 2c.
(c)

(
AN−1, A1A2 . . . AN

2
−1

)
and

(
AN , AN

2
AN

2
+1 . . . AN−2

)
are weakly compatible.

(d) If one of AN−1(X), A1A2 . . . AN
2
−1(X), AN (X) and AN

2
AN

2
+1 . . . AN−2(X) is a complete subspace of X

then
(i) AN−1 and A1A2 . . . AN

2
−1 have a coincidence point and
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(ii) AN and AN
2
AN

2
+1 . . . AN−2 have a coincidence point in X.

Then A1, A2, . . . AN have a unique common fixed point in X.

Proof. Let x0 ∈ X be arbitrary then AN (x0) ∈ X. Since AN (X) ⊆ A1A2 . . . AN
2
−1(X) there exists x1 ∈ X

such that A1A2 . . . AN
2
−1(x1) = AN (x0) and for x1 there exists x2 ∈ X such that AN

2
AN

2
+1 . . . AN−2(x2) =

AN−1(x1) and so on.
Continuing this process we can define a sequence {yn} in X such that

yn = ANxn = A1A2 . . . AN
2
−1(xn+1) and

yn+1 = AN−1xn+1 = AN
2
AN

2
+1 . . . AN−2xn+2

Now we put x = xn and y = xn+1 in (1) we get,
a||AN−1(xn)−AN (xn+1)||+b

{
||A1A2 . . . AN

2
−1(xn)−AN−1(xn)||+||AN

2
AN

2
+1 . . . AN−2(xn+1)−AN (xn+1)||

}
+

c
{
||AN

2
AN

2
+1 . . . AN−2(xn+1)−AN−1(xn)||+ ||A1A2 . . . AN

2
−1(xn)−AN (xn+1)||

}
≤ r||A1A2 . . . AN

2
−1(xn)−AN

2
AN

2
+1 . . . AN−2(xn+1)||

or, a||yn − yn+1||+ b
{
||yn−1 − yn||+ ||yn − yn+1||

}
+c

{
||yn − yn||+ ||yn−1 − yn+1||

}
≤ r||yn−1 − yn||

or, a||yn − yn+1||+ b
{
||yn−1 − yn||+ ||yn − yn+1||

}
≤ r||yn−1 − yn|| − c||yn−1 − yn+1||

≤ r||yn−1 − yn|| − c
{
||yn−1 − yn||+ ||yn − yn+1||

}
or, ||yn − yn+1|| ≤

r − b− c

a+ b+ c
||yn−1 − yn||

or, ||yn − yn+1|| ≤ k||yn−1 − yn|| (2)

where k = r−b−c
a+b+c , k < 1 as r < a+ 2b+ 3c.

Proceeding as above we will get,

||yn − yn+1|| ≤ k||yn−1 − yn|| ≤ k2||yn−2 − yn−1|| ≤ · · · ≤ kn||y0 − y1|| (3)

where k<1. Now let m > n then

||ym − yn|| ≤ ||yn − yn+1||+ ||yn+1 − yn+2||+ · · ·+ ||ym−1 − ym||
≤ (kn + kn+1 + kn+2 + · · ·+ km−1)||y0 − y1||

=
kn(1− km)

1− k
||y0 − y1||

Therefore, ||ym − yn|| ≤ kn

1− k
||y0 − y1|| (4)

Let c > 0. Then, there exists a δ > 0 such that

c+Nδ(0) ⊆ H,

where Nδ(0) = {y ∈ X : ∥y∥ ≤ δ}. Since 0 < k < 1, there exists a positive integer N ′ such that for all
n ≥ N ′,

kn(1− km)

1− k
∥y0 − y1∥ ≤ δ.
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This implies
kn(1− km)

1− k
∥y0 − y1∥ ∈ Nδ(0),

and hence,

−kn(1− km)

1− k
∥y0 − y1∥ ∈ Nδ(0).

Therefore,

c− kn

1− k
∥y0 − y1∥ ∈ c+Nδ(0) ⊆ H,

which implies
kn

1− k
∥y0 − y1∥ ≤ c for all n ≥ N ′.

So by definition {yn} is a cauchy sequence in X. Since X is complete there exists a z in X such that
lim
n→∞

yn = z and

lim
n→∞

ANxn = z = lim
n→∞

A1A2 . . . AN
2
−1xn+1

= lim
n→∞

AN−1xn+1 = lim
n→∞

AN
2
AN

2
+1 . . . AN−2xn+1 = z

Now, suppose that A1A2 . . . AN
2
−1(X) is complete. Then there exists a point p in X such that

A1A2 . . . AN
2
−1p = z (5)

Now put x = p and y = xn in (1) we get,

a||AN−1p−AN (xn)||+ b
{
||A1A2 . . . AN

2
−1p−AN−1p||+ ||AN

2
AN

2
+1 . . . AN−2xn −AN (xn)||

}
+c

{
||AN

2
AN

2
+1 . . . AN−2(xn)−AN−1p||+ ||A1A2 . . . AN

2
−1p−AN (xn)||

}
≤ r||A1A2 . . . AN

2
−1p−AN

2
AN

2
+1 . . . AN−2xn||

Taking limit as n → ∞ and using (5) in the above inequality we get,
a||AN−1p− z||+ b

{
||z −AN−1p||+ ||z − z||

}
+ c

{
||z −AN−1p||+ ||z − z||

}
≤ r||z − z||

i.e., (a+ b+ c)||AN−1p− z|| ≤ 0

or, ||AN−1p− z|| = 0 as (a+ b+ c) ̸= 0

hence, AN−1p = z. (6)

From (5) and (6) we get,
A1A2 . . . AN

2
−1p = z = AN−1p

That is p is a coincidence point of A1A2 . . . AN
2
−1 and AN−1.

As AN−1(X) ⊆ AN
2
AN

2
+1 . . . AN−2(X), AN−1p = z implies z ∈ AN

2
AN

2
+1 . . . AN−2(X). Let u in X then

AN
2
AN

2
+1 . . . AN−2u = z (7)

Now put x = xn+1 and y = u in (1) we get,

a||AN−1xn+1 −AN (u)||+ b
{
||A1A2 . . . AN

2
−1xn+1 −AN−1xn+1||+ ||AN

2
AN

2
+1 . . . AN−2u−AN (u)||

}
+c

{
||AN

2
AN

2
+1 . . . AN−2(u)−AN−1xn+1||+ ||A1A2 . . . AN

2
−1xn+1 −AN (u)||

}
≤ r||A1A2 . . . AN

2
−1xn+1 −AN

2
AN

2
+1 . . . AN−2u||
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Taking limit as n → ∞ and using (7) in the above inequality we get,
a||z −AN (u)||+ b

{
||z − z||+ ||z −AN (u)||

}
+ c

{
||z − z||+ ||z −AN (u)||

}
≤ r||z − z||

i.e., (a+ b+ c)||z −AN (u)|| ≤ 0

or, ||AN (u)− z|| = 0 as (a+ b+ c) ̸= 0

Therefore, AN (u) = z (8)

From (7) and (8) we get,
AN

2
AN

2
+1 . . . AN−2(u) = z = AN (u)

That is u is a coincidence point of AN and AN
2
AN

2
+1 . . . AN−2. Since

(
AN−1, A1A2, . . . , AN

2
−1

)
and(

AN , AN
2
AN

2
+1 . . . AN−2

)
are weakly compatible in X.

so
AN−1.(A1A2, . . . , AN

2
−1)p = (A1A2, . . . , AN

2
−1).AN−1p

Therefore, AN−1(z) = A1A2, . . . , AN
2
−1(z) (9)

and
AN .(AN

2
AN

2
+1 . . . AN−2)u = (AN

2
AN

2
+1 . . . AN−2).ANu

i.e., AN (z) = AN
2
AN

2
+1 . . . AN−2(z) (10)

Now put x = z and y = xn in (1) we get,

a||AN−1z −AN (xn)||+ b
{
||A1A2 . . . AN

2
−1z −AN−1z||+ ||AN

2
AN

2
+1 . . . AN−2xn −AN (xn)||

}
+c

{
||AN

2
AN

2
+1 . . . AN−2(xn)−AN−1z||+ ||A1A2 . . . AN

2
−1z −AN (xn)||

}
≤ r||A1A2 . . . AN

2
−1z −AN

2
AN

2
+1 . . . AN−2xn||

Taking limit as n → ∞ and using (9) in the above inequality we get,
a||AN−1z − z||+ b

{
||AN−1z −AN−1z||+ ||z − z||

}
+ c

{
||z −AN−1z||+ ||AN−1z − z||

}
≤ r||AN−1z − z||

=⇒ (a+ 2c− r)||AN−1z − z|| ≤ 0

=⇒ ||AN−1z − z|| = 0 as (a+ 2c− r) ̸= 0

=⇒ AN−1z = z. (11)

so from (9) we get, AN−1z = A1A2 . . . AN
2
−1z = z

Now put x = xn+1 and y = z in (1) we get,

a||AN−1xn+1 −AN (z)||+ b
{
||A1A2 . . . AN

2
−1xn+1 −AN−1z||+ ||AN

2
AN

2
+1 . . . AN−2z −AN (z)||

}
+c

{
||AN

2
AN

2
+1 . . . AN−2(z)−AN−1xn+1||+ ||A1A2 . . . AN

2
−1xn+1 −AN (z)||

}
≤ r||A1A2 . . . AN

2
−1xn+1 −AN

2
AN

2
+1 . . . AN−2z||
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Taking limit as n → ∞ and using (10) in the above inequality we get,
a||z −AN (z)||+ b

{
||z − z||+ ||AN (z)−AN (z)||

}
+ c

{
||AN (z)− z||+ ||z −AN (z)||

}
≤ r||z −AN (z)||

=⇒ (a+ 2c− r)||AN (z)− z|| ≤ 0

=⇒ ||AN (z)− z|| = 0 as (a+ 2c− r) ̸= 0

Hence, AN (z) = z. (12)

From (10) we get, AN (z) = z = AN
2
AN

2
+1 . . . AN−2z.

Now put x = AN
2
−1z and y = z in (1) we get,

a||AN−1(AN
2
−1z)−AN (z)||+b

{
||A1A2 . . . AN

2
−1(AN

2
−1z)−AN−1(AN

2
−1z)||+||AN

2
AN

2
+1 . . . AN−2(z)−AN (z)||

}
+c

{
||AN

2
AN

2
+1 . . . AN−2(z)−AN−1(AN

2
−1z)||+ ||A1A2 . . . AN

2
−1(AN

2
−1z)−AN (z)||

}
≤ r||A1A2 . . . AN

2
−1(AN

2
−1z)−AN

2
AN

2
+1 . . . AN−2(z)||

=⇒ a||AN
2
−1(z) − z|| + b

{
||AN

2
−1(z) − AN

2
−1(z)|| + ||z − z||

}
+ c

{
||z − AN

2
−1(z)|| + ||AN

2
−1(z) − z||

}
≤

r||AN
2
−1(z)− z||

=⇒ (a+ 2c− r)||AN
2
−1(z)− z|| ≤ 0

=⇒ ||AN
2
−1(z)− z|| = 0 as (a+ 2c− r) ̸= 0

Therefore, AN
2
−1(z) = z (13)

In similar way if we continue this process by putting x = Ai(z), where i = 1, 2, . . . , N2 − 2 and y = z in (1)
we get

Ai(z) = z for all i = 1, 2, . . . ,
N

2
− 2. (14)

Now, put x = z and y = AN−2(z) in (1) we get,

a||AN−1(z)−ANAN−2(z)||+b
{
||A1A2 . . . AN

2
−1(z)−AN−1(z)||+||AN

2
AN

2
+1 . . . AN−2AN−2(z)−ANAN−2(z)||

}
+c

{
||AN

2
AN

2
+1 . . . AN−2AN−2(z)−AN−1(z)||+ ||A1A2 . . . AN

2
−1(z)−ANAN−2(z)||

}
≤ r||A1A2 . . . AN

2
−1(z)−AN

2
AN

2
+1 . . . AN−2AN−2(z)||

=⇒ a||z − AN−2(z)|| + b
{
||z − z|| + ||AN−2(z) −N−2 (z)||

}
+ c

{
||AN−2(z) − z|| + ||z − AN−2(z)||

}
≤

r||z −AN−2(z)||

=⇒ (a+ 2c− r)||z −AN−2(z)|| ≤ 0

=⇒ ||z −AN−2(z)|| = 0 as (a+ 2c− r) ̸= 0

=⇒ AN−2(z) = z (15)

In similar way if we continue this process by putting x = z and y = Aj(z), j = N
2 ,

N
2 + 1, . . . , N − 3 in

(1) we obtain,

Aj(z) = z for all j =
N

2
,
N

2
+ 1, . . . , N − 3. (16)
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Hence from equations (11)-(16) we conclude that z is a common fixed point of A1, A2, . . . , AN . Now we
prove that z is a unique common fixed point A1, A2, . . . , AN . If possible let there exists another fixed point
w( ̸= z) such that A1w = A2w = · · · = ANw = w. Putting x = z and y = w in equation (1) we get,

a||AN−1z −AN (w)||+ b
{
||A1A2 . . . AN

2
−1z −AN−1(z)||+ ||AN

2
AN

2
+1 . . . AN−2w −AN (w)||

}
+c

{
||AN

2
AN

2
+1 . . . AN−2(w)−AN−1z||+||A1A2 . . . AN

2
−1z−AN (w)||

}
≤ r||A1A2 . . . AN

2
−1z−AN

2
AN

2
+1 . . . AN−2w||

=⇒ a||z − w||+ b
{
||z − z||+ ||w − w||

}
+ c

{
||w − z||+ ||z − w||

}
≤ r||z − w||

=⇒ (a+ 2c− r)||z − w|| ≤ 0

=⇒ ||z − w|| = 0 as (a+ 2c− r) ̸= 0

Therefore, z = w

So the fixed point is unique. Hence z is a unique common fixed point of A1, A2, . . . , AN .

Corollary 3.2. [7] Let (X, ||.||) be a Cone Banach Space and d : X ×X → E with d(x, y) = ||x − y||. Let
A, B, C, D, K, M , P and V be eight self mappings on X that satisfy the conditions:

(a) V (X) ⊆ ABC(X) and P (X) ⊆ DKM(X).

(b) a||Px− V y||+ b
{
||ABCx− Px||+ ||DKMy − V y||

}
+ c

{
||DKMy − Px||+ ||ABCx− V y||

}
≤ r||ABCx−DKMy||; (17)

for all x, y ∈ X, 0 ≤ r < a+ 2b+ 3c, a+ b+ c ̸= 0, r ̸= a+ 2c.
(c) (P,ABC) and (V,DKM) are weakly compatible.
(d) If one of P (X), ABC(X), V (X), DKM(X) is a complete subspace of X then,

(i) P and ABC have a coincidence point and
(ii) V and DKM have a coincidence point in X.

Then A, B, C, D, K, M , P and V have a unique common fixed point in X.

Proof. Putting,

AN = V, A1 = A, A2 = B, A3 = C

and AN−1 = P, AN
2
= D, AN

2
+1 = K, AN

2
+2 = M.

and A4 = A5 = · · · = AN
2
−1 = AN

2
+3 = · · · = AN−2 = I(Identity mapping) in our main theorem 3.1 we get

result.

Corollary 3.3. [7] Let (X, ||.||) be a Cone Banach Space and d : X ×X → E with d(x, y) = ||x − y||. Let
A, B, D, K, P and V be six self mappings on X that satisfy the conditions:

(a) V (X) ⊆ AB(X) and P (X) ⊆ DK(X).

(b) a||Px− V y||+ b
{
||ABx− Px||+ ||DKy − V y||

}
+ c

{
||DKy − Px||+ ||ABx− V y||

}
≤ r||ABx−DKy||; (18)

for all x, y ∈ X, 0 ≤ r < a+ 2b+ 3c, a+ b+ c ̸= 0, r ̸= a+ 2c.
(c) (P,AB) and (V,DK) are weakly compatible.
(d) If one of P (X), AB(X), V (X), DK(X) is a complete subspace of X then,

(i) P and AB have a coincidence point and
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(ii) V and DK have a coincidence point in X.
Then A, B, D, K, P and V have a unique common fixed point in X.

Proof. The proof of the theorem 3.3 is similar as the proof of the theorem 3.2.

Corollary 3.4. Let (X, ||.||) be a Cone Banach Space and d : X ×X → E with d(x, y) = ||x − y||. Let A,
D, P and V be Four self mappings on X that satisfy the conditions:

(a) V (X) ⊆ A(X) and P (X) ⊆ D(X).

(b) a||Px− V y||+ b
{
||Ax− Px||+ ||Dy − V y||

}
+ c

{
||Dy − Px||+ ||Ax− V y||

}
≤ r||Ax−Dy||; (19)

for all x, y ∈ X, 0 ≤ r < a+ 2b+ 3c, a+ b+ c ̸= 0, r ̸= a+ 2c.
(c) (P,A) and (V,D) are weakly compatible.
(d) If one of P (X), A(X), V (X), D(X) is a complete subspace of X then,

(i) P and A have a coincidence point and
(ii) V and D have a coincidence point in X.

Then A, D, P and V have a unique common fixed point in X.

Proof. Putting,

AN = V, A1 = A

and AN−1 = P, AN
2
= D

and A2 = A3 = · · · = AN
2
−1 = AN

2
+1 = AN−2 = I(Identity mapping) in our main theorem 3.1 we get the

result.

4. Conclusions:

In this paper, we have established new results concerning coincidence points and common fixed points
through the framework of weakly compatible mappings in Cone Banach Spaces. The main theorem presented
here serves as a significant generalization of various existing results in the current literature, thus broadening
the scope and applicability of fixed point theory in cone metric spaces. Furthermore, we have demonstrated
the existence of coincidence points and common fixed points for eight mappings in Corollary 3.2, six mappings
in Corollary 3.3, and four mappings in Corollary 3.4. These findings contribute to the deeper understanding
of the structure of fixed points in more complex settings and offer a foundation for future research in nonlinear
analysis and its applications.
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