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Abstract

The primary objective of this paper is to establish the existence of coincidence points and common fixed
points for an even number of self-mappings defined on cone Banach spaces under the framework of weak
compatibility. By employing an ordered structure and suitable contractive conditions, we present general
fixed point results that extend and unify several known theorems in the existing literature. Specifically,
Corollaries 3.2, 3.3 and 3.4 address the existence of coincidence and common fixed points for eight, six, and
four self-mappings, respectively. Our findings contribute to the ongoing development of fixed point theory in
cone metric spaces, offering broad generalizations and encompassing a wide range of previously established
results as special cases.
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1. Introduction

The theory of fixed points has emerged as a fundamental area of mathematical analysis due to its extensive
applications in various fields such as differential equations, optimization, and dynamic systems. In recent
years, the concept of cone metric spaces, as introduced by Huang and Zhang [4]|, has provided a fruitful
generalization of classical metric spaces by replacing the range of the metric with an ordered Banach space.
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This extension enables a more flexible framework to explore fixed point theorems, especially in the absence
of continuity or commutativity assumptions.

Following this pioneering work, numerous researchers have investigated the existence and uniqueness of
fixed points in cone metric and cone Banach spaces under various contractive conditions. Abbas and Jungck
[1] initiated an important line of inquiry by establishing common fixed point results for noncommuting
mappings without the assumption of continuity. Subsequent studies have deepened and broadened this
framework. For instance, Karapinar [5] and Abdeljawad et al. [2| explored fixed point theorems in cone
Banach spaces, contributing significantly to the development of the theory with generalized contraction
conditions.

Further advancements were made by Gujetiya et al. [3], who studied compatible mappings, and by Tiwari
and Shukla [3]|, who addressed coincidence and common fixed points within cone Banach space. Sarkar and
Tiwary [7] introduced results concerning weakly compatible mappings, while Varghese and Dersanambika [8]
offered refinements that underscore the importance of topological structure in determining the existence of
fixed points.

This expanding field of research demonstrates significant potential for broad application and further
development. Inspired by these advancements, this paper seeks to establish new common fixed point results
for N self-mappings under specific conditions within cone Banach spaces, thereby enhancing the theoretical
foundation of fixed point theory and its applications.

2. Preliminaries

In this section, we outline key definitions and preliminary results that support the development of our
main work. These foundational concepts are essential for building the theoretical framework and ensuring a
clear understanding of the results presented in the later sections.

Definition 2.1. [8] Let E be a real Banach space and let K C E. The set K is said to be a cone if it
satisfies the following conditions:

1. K is nonempty, closed, and K # {0}.
2. For all z,y € K and for all scalars a,b > 0, the linear combination ax + by € K.
3. If z € K and —z € K, then = = 0; in other words, K N (—K) = {0}.

Given a cone K C E, we can define a partial ordering < on E by stating that x < y if and only if
y —x € K. Furthermore, we write x < y when y — x € int K, where int K denotes the interior of K.

Now, let X be a nonempty set and K C F as above. A function d : X x X — F is called a cone metric
if it satisfies the following properties:

1. d(z,y) € K for all x,y € X, and d(z,y) = 0 if and only if z = y.

2. d(z,y) = d(y,x) for all z,y € X.
3. d(z,z) <d(x,y) + d(y,2) for all z,y,z € X.

A pair (X, d), where d is a cone metric, is referred to as a cone metric space.

Definition 2.2. [5] Let E be a real Banach space and let K C E be a cone with int(K) # ¢. A mapping
|1 : X — E defined on a real linear space X is called a cone norm if it satisfies the following conditions for
all z,y € X and a € R:

(i) ||lz|| > 0 in E, and ||z|| = € if and only if z = 0,
(i) fJazl| = |af |,
(iii) [z +yll < =]l + [lyll,

where “>” and “<” denote the partial ordering induced by the cone K, and @ is the zero element of E.
The pair (X, || - ||) is then called a cone normed linear space.
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Definition 2.3. [5] Let (X, || -||) be a cone normed space, where z € X and {z,} is a sequence in X. Then
we define the following concepts:

(a) The sequence {x,} is said to converge to z € X if, for every element ¢ € E with 0 < ¢, there exists a
natural number N; such that ||z, — z|| < ¢ for all n > Nj. This is denoted by lim z,, = z or x,, — =.
n— o0

(b) The sequence {z,} is called a Cauchy sequence if, for every ¢ € E with 0 < ¢, there exists a natural
number N; such that ||z, — x| < ¢ for all n,m > Nj.

(¢) The cone normed space (X, || -||) is said to be complete if every Cauchy sequence in X converges to a
point in X; that is, every Cauchy sequence has a limit in X.

A complete cone normed space is called a cone Banach space.

Definition 2.4. [7] Let (X, | - ||) be a cone normed space. Two self-mappings A; and Ay on X are said to
be compatible if, for every sequence {z,} in X satisfying

lim Aix, = lim Asx, =x for some x € X,
n—oo n—o0

it follows that
11_>H1 ||A1A21’n - AQAliL‘n” = 0.

Definition 2.5. 7] Two maps A; and Ay are called commuting if Ay Asx = AsAjx for all x € X.

Definition 2.6. [8] Let A; and As be two self maps on a set X, if Ajx = Asx for some x in X then z is
called coincidence point of A; and As.

Definition 2.7. 7] Let A; and Ay be self-maps on a cone normed space (X, | - ||). The mappings A; and
Ao are said to be weakly compatible if they commute at their point of coincidence; that is, if there exists
x € X such that A1z = Asx, then it follows that

AlAQJJ = AQAl.T.

3. Main Results

In this section, we present fixed point theorems for an even number of self-mappings in cone Banach
spaces. These results extend and generalize the findings of [7] and related works. Our theorems contribute to
the broader understanding of fixed point theory by offering new insights and conditions under which common
fixed points exist in the framework of cone Banach spaces.

Theorem 3.1. Let (X, ||.||) be a cone Banach space and d : X x X — E with d(x,y) = ||z — y||. Let Ai,
Ao, ..., AN be N self mappings on X, where N is an even number, satisfying the following conditions:

(8) AN(X) € A1dy... Ay (X) and Ay-1(X) S Ax Ay, ... Ax-o(X)
(b) allAy-1z — Ayl +b{|1414s .. Ay 7~ Ay @)l + Ay Ay - Av-ay — An(w)Il |
+e{llAy Ay o Avoa(y) = Avaazll + (1A Az Ay o - An(y)l| |
§1"||A1A2...A%71:U—A%A%Jrl...AN_ng (1)

orallz,ye X,0<r<a+2b+3c,a+b+c#0,r#a+ 2c.
I y
(c) (AN_l,AlAg .. .Aﬁ_l) and (AN,AEAE_,’_I . ..AN_Q) are weakly compatible.
2 2 2
(d) If one of An-1(X), A1Az... An _(X),AN(X) and Ax AN ;... AN—2(X) is a complete subspace of X
2 2 2
then
(i) An—1 and AjAy ... An | have a coincidence point and
2
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(ii) Ay and AgAE_H ... AN_s have a coincidence point in X.
2 2

Then Ay, As, ... AN have a unique common fized point in X.

Proof. Let xg € X be arbitrary then Ax(x¢) € X. Since Ay(X) C A1Ay... Axy_,(X) there exists z1 € X
2
such that A1Ay... Ay _,(z1) = An(20) and for x; there exists x5 € X such that ANAN_ ... An_ao(z2) =
2 2 2

Apn—_1(z1) and so on.
Continuing this process we can define a sequence {y,} in X such that

Yn = Anz, = A1A5. ..A%71($n+1) and
Ynt1 = AN_1Tpy1 = AgA%H AN 2T g2

Now we put = z,, and y = x,,41 in (1) we get,
al [ An-1(@n) = An (o) {1 [Arde - Ay )= Axam)lHIAy Ay Axoa(ane) = An )l +

1Ay Ay y o Ana(@nin) = Av-a (@)l + |41 Ay (@) = An(@nsn)1}
S 7"||A1A2 . A%_l(l‘n) - A%A%—i—l N .AN_Q(;Un+1)H

or, allyn = yns1ll + b4 g1 = gl + lym = g1l } +¢ {llyn = wmll + llyn1 — g1}
< 7[|Yn—1 — yall
or, allyn — Ynt1l| + b{llynq — Ynl| + llyn — yn+1||} < 7l[yn-1 = yull = cllyn-1 — Yn+1l|

< rllgnt = wall = e{llgn1 = gl + llvm — gl
or, || (g H
r _ L T ey —
) Yn — Yn+1 S atbto Yn—1 — UYn
or, |[|yn = ynt1ll < Kllyn—1 — yall (2)
where k = Z;Z;‘C”, k<lasr<a+2b+ 3c
Proceeding as above we will get,
lyn = yn1ll < Kllyn—1 = vall < K |lyn—2 = yn-ll <--- <k"[lyo — | (3)

where k<1. Now let m > n then

ym = yall < Nyn = Ynsrll + lyne1 — Yns2ll + - + [[Ym—1 — Yml|
< (KR AT By —

E™(1 — k™)
= ﬁHyO*ylH
n
Therefore, ||ym — yn|| < 1—k”y0_y1|| (4)

Let ¢ > 0. Then, there exists a 0 > 0 such that
¢+ Ns(0) € H,

where Ns5(0) = {y € X : |ly|| < §}. Since 0 < k < 1, there exists a positive integer N’ such that for all
n> N,
K"(1— k™)

— 2 ||yo — <é.
o - wll <
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This implies

E™(1 — k™
(1_k)||yo — 1]l € Ns(0),
and hence,
E™(1— k™
_(1_,{)!?;0 — y1]| € N5(0).
Therefore,
n
c— 15l —will €+ N5(0) € H,
which implies
kn
1 k”yo_y1”§0 fOI“aHnZN/,

So by definition {y,} is a cauchy sequence in X. Since X is complete there exists a z in X such that
lim y, = z and
n— o0

lim Az, =2z = lim AjAy.. . Ax_ 7pq1

n—o00 n— 00 2

= nh_)rgo AN_1Tpi1 = nh_}n;o A%A%Jrl AN 9Ty =2
Now, suppose that A;Ay... Ay _,(X) is complete. Then there exists a point p in X such that
2
AjAy. . An_p==z (5)
2

Now put x = p and y = x,, in (1) we get,
allAn-1p = An(@)ll +b{114145 .. Ay _p = Ay_apll + | Ay Ay . Ax sz, — Ay(en)l|}

te{ll Ay Ay .y An-a(@a) = Anopll + 1414z Ay p— An(a)l}

<r||A1Az.. . Ax_p— AvAn_ . AN oz
2 2 2

Taking limit as n — oo and using (5) in the above inequality we get,
allAn-1p = 2l| + b{ |1z = Ax—1pll + 1z = 2l1 } + {112 = Av-upll + |2 = 2l } < vl — 2|

i.e., (a+b+c)||[An_1p— 2] <0
or, |[An_1ip—=z||=0 as (a+b+c)#0
hence, An_1p=z. (6)

From (5) and (6) we get,

A1As . .. A%—lp =z=ANn_1p

That is p is a coincidence point of A1 Ay... Ax _; and Ay_;.

As Ax1(X) C Ay Ay - Ava(X), An_1p = z implies z € AyAy,y . Ay o(X). Let uin X then

A%A%H...AN,QUZZ (7)
Now put = 2,41 and y = u in (1) we get,
a||AN,1:cn+1 — AN(U)H + b{||A1A2 - Agflxnﬂ-l - ANflﬂjn—f—lH + HA%A%JA .. .AN,QU — AN(U)H}

+C{||A%A%+l “en AN,Q(U) — ANflﬂfn—i-lH + HA1A2 ‘e Agflxn-i-l — AN(U)H}

S THAlAQ...A%_lwn_H — A%A%_H .. .AN_QU,H
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Taking limit as n — oo and using (7) in the above inequality we get,
allz = An @)l +b{112 = 2l + |1z = A (@)l|} + e{llz = 21l + 112 = An ()|} < 7|z = 2]
i.e.,(a+b+c)|lz—An(u)|| <0
or, |[|[An(u)—z||=0 as (a+b+¢c)#0
Therefore, An(u) =z (8)
From (7) and (8) we get,
A%A%H o AN—o(u) = 2 = An(u)
That is u is a coincidence point of Ay and AﬂAﬂ_i_l ... An_9. Since (AN_l, A1As, ... ,Aﬂ_l) and
2 2 2
(AN, AﬂAﬂ+1 .. .AN_Q) are weakly compatible in X.
2 2
S0
AN_l.(AlAQ, ey A%—l)p = (AlAQ, e ,A%_l)-AN—lp
Therefore, An_i(z) = A1As,...,An_(2) (9)
2
and
AN.(A%A%H AN Du= (A%A%H . AN_9). Anu
i.e., An(z) :A%A%J’_l...AN_Q(Z) (10)
Now put x = z and y = x,, in (1) we get,
a||AN,1z — AN(azn)H + b{HAlAQ ‘e A%_lz — ANfle + HA%A%.H ‘e AN,QJIn — AN(;rn)H}
+c{|]A%A%+1 AN a(wn) = Ay 1zl + (A1 ds . A gz - AN(%)H}
< —
_T||A1A2...A%71Z A%A%Jrl...AN_Ql‘nH
Taking limit as n — oo and using (9) in the above inequality we get,
allAn-1z = 2| +b{||An-12 = An-azll + ||z = 2l | + {112 = Av-azl + [ An-1z = 2ll} < 7llAn-1z = 2]
= (a+2c—71)|[An_12—2|| <0
= ||An_12—2||=0 as (a+2c—7r)#0
=  Ay_1z=2z2. (11)

so from (9) we get, Ay_1z2 = A1Az... Ay 2=z
2

Now put & = 2,41 and y = z in (1) we get,

al| An_12ns1 — An(2)]] + b{HAlAg Ay ywagn — Azl | Ax Ay Ay gz - AN(z)H}

+C{|’A%A%+l - AN_Q(Z) — AN—lxn—l-lH + HA1A2 - A%_lxqﬂ_l — AN(Z)H}

§ 7‘||A1A2 N .Aﬂ71$n+1 - AﬁAﬂJrl .. .AN_QZH
2 2 2
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Taking limit as n — oo and using (10) in the above inequality we get,
allz = An@) +b{ 11z = 2l + lAn (2) = A1} + e{ AN (2) = 2l] + Iz = AN ()1} < 7llz = An ()]

= (a+2c—7)||An(2) — 2|| <0
= [|An(2) —2|| =0 as (a+2c—7r)#0

Hence, Apn(z)=z. (12)
From (10) we get, An(2) =z = ANAN . AN—22.
2 2

Now put x = Ay _,z and y = z in (1) we get,
2
CL"AN_1<A%_12)—AN(Z)H+I){HAlAQ .. 'A%_1(A%_1Z)_AN—1(A%_1Z)‘H_HA%A%.H .. .AN_Q(Z)—AN(Z)H}

+c{||A%A%H CAna(2) = Anoa(Ay 2]+ [[Ards . Ax (A y2) - AN(z)H}
|

— alldy () = 2l + {114y 4 (2) — Ay @I+ 11z = 2l +e{llz = Ay (I + 1Ay () = 21} <
rllAy () - 2]

2
<r||A1As. ..A%_l(A%_lz) - A%A%+1 L AN—2(2)

— (a—l—20—r)|]A%71(z)—z|| <0
= HA%_l(z)—zH:O as (a+2c—r)#0

Therefore, Ay _,(2) =z (13)
2
In similar way if we continue this process by putting z = A;(z), where i = 1,2, ..., % —2and y =z in (1)
we get
. N
Ai(z) =z for all 1:1,2,...,5—2. (14)

Now, put z = z and y = Ay_2(2) in (1) we get,
a‘|AN,1(Z)—ANAN72(Z)‘|+b{|‘A1A2 . ‘A%_l(z)_ANfl(ZﬂH_HA%A%_H . .AN,QAN,Q(Z)—ANAN,Q(Z)H}

+C{HA%A%+1 N AN_QAN_Q(Z) — AN—l(Z)H + HAlAQ e A%_l(z) — ANAN_Q(Z)H}
S THAlAQ .. A%_1(2> — A%A%—l—l .. .AN_QAN_Q(Z)H

—allz = Av-a ()| + b{ 11z = 2l + [An-2(2) —x-2 ()1} + {1 An-2(2) = 2]l + 1]z = Av-2()} <
rllz = An-s(2)]

= (a+2c—r7)||z—Anv_2(2)]| <0

= [lz—An_2(2)||=0 as (a+2c—1r)#0

- AN_Q(Z) =z (15)

In similar way if we continue this process by putting x = z and y = A;(2), j = %, % +1,...,N—3in

(1) we obtain,
N N
Aj(z) =z for all jz;,;—i—l,...,N—S. (16)
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Hence from equations (11)-(16) we conclude that z is a common fixed point of Aj, As,..., Ay. Now we
prove that z is a unique common fixed point Ay, Ao, ..., Ay. If possible let there exists another fixed point
w(# z) such that Ajw = Asw = --- = Ayw = w. Putting z = z and y = w in equation (1) we get,

al|An_12 — An(w)|| + b{||A1A2 LAy 2= A Ax Ay Ay sw - AN(w)||}
—|—c{|\A%A%+1 o An—a(w)—An_12||+]| A1 A . . A%_lz—AN(w)H} <rllAids. Ay z—Ax Ay Ay wl|

— allz = wll +b{112 = 2l| + [Jw = wl|} + e{ Jlw = 21 + |12 = wll} < rllz = wl]
= (a+2c—7)|]z—w|]| <0
= [lz—w||=0 as (a+2c—71)#0

Therefore, 2z =w

So the fixed point is unique. Hence z is a unique common fixed point of Aj, Ao, ..., An.
O

Corollary 3.2. [7] Let (X,||.||) be a Cone Banach Space and d : X x X — E with d(z,y) = ||z — y||. Let
A, B,C,D, K, M, PandV be eight self mappings on X that satisfy the conditions:

(a) V(X) C ABC(X) and P(X) € DKM(X).
(b) al [Pz — Vy|| +b{|[ABCx — Pal| +[|DE My — Vy||} + c{|[DK My — Pa|| + || ABCz — Vy|}

< r||ABCz — DK My||; (17)

forallz,ye X, 0<r<a+2b+3c,a+b+c#0, r#a+2c.
(¢) (P,ABC) and (V,DKM) are weakly compatible.
(d) If one of P(X),ABC(X),V(X),DKM(X) is a complete subspace of X then,
(i) P and ABC have a coincidence point and
(ii) V and DKM have a coincidence point in X .

Then A, B, C, D, K, M, P and V have a unique common fized point in X.

Proof. Putting,

Av=V, A=A, Ay=B, A;3=C
and AN_1:P, A%:D, A%_’_IZK, A%—FQ:M'

and Ay = As == An
2
result.

L =Ax

B N3 == An_2 = I(Identity mapping) in our main theorem 3.1 we get
2

O

Corollary 3.3. [7] Let (X,||.||) be a Cone Banach Space and d : X x X — E with d(z,y) = ||z — y||. Let
A, B, D, K, P and V be siz self mappings on X that satisfy the conditions:

(a) V(X) C AB(X) and P(X) C DK(X).
(b) allPz = V| +b{||ABz - Px||+ |DKy — Vyl|} + {IDKy - Pa|| + || ABz - vy}
< r|[ABz — DKyll; (18)

forallz,ye X,0<r<a+2b+3c,a+b+c#0, r#a+2c.
(¢) (P,AB) and (V,DK) are weakly compatible.
(d) If one of P(X),AB(X),V(X),DK(X) is a complete subspace of X then,
(i) P and AB have a coincidence point and
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(ii) V and DK have a coincidence point in X .
Then A, B, D, K, P and V' have a unique common fized point in X .

Proof. The proof of the theorem 3.3 is similar as the proof of the theorem 3.2.
O

Corollary 3.4. Let (X,]|.|]|) be a Cone Banach Space and d : X x X — E with d(z,y) = ||z — y||. Let A,
D, P and V be Four self mappings on X that satisfy the conditions:
(a) V(X) C A(X) and P(X) C D(X).
(b) al [Pz — Vy|| +b{||Az — Pal| + Dy — Vyll} + c{ 1Dy — Pz|| + || 4z - Vy||}
< r||Az — Dyll; (19)
forallz,ye X, 0<r<a+2b+3c,a+b+c#0, r+#a+2c.
(c) (P,A) and (V,D) are weakly compatible.
(d) If one of P(X), A(X),V(X),D(X) is a complete subspace of X then,

(i) P and A have a coincidence point and
(ii) V' and D have a coincidence point in X .

Then A, D, P and V have a unique common fixed point in X.
Proof. Putting,

Av=V, A=A
and AN—l :P, Aﬂ =D
2

and Ap = A3 =---= Ay | = Aﬂ+1 = An_o = I(Identity mapping) in our main theorem 3.1 we get the
2 2
result. O

4. Conclusions:

In this paper, we have established new results concerning coincidence points and common fixed points
through the framework of weakly compatible mappings in Cone Banach Spaces. The main theorem presented
here serves as a significant generalization of various existing results in the current literature, thus broadening
the scope and applicability of fixed point theory in cone metric spaces. Furthermore, we have demonstrated
the existence of coincidence points and common fixed points for eight mappings in Corollary 3.2, six mappings
in Corollary 3.3, and four mappings in Corollary 3.4. These findings contribute to the deeper understanding
of the structure of fixed points in more complex settings and offer a foundation for future research in nonlinear
analysis and its applications.

5. Acknowledgments

The first author wishes to acknowledge the financial support from University Grant Commission (UGC-
NET JRF).
Authors Contributions

All authors contributed equally to the conceptualization, formulation, and design of the research problem.

Conflicts of Interest

The authors declare no conflict of interest.



Jayanta Das, Ashoke Das, Lett. Nonlinear Anal. Appl. 3 (2025), 193-202 202

References
[1] M. Abbas, G. Jungck, Common Fixed Point results for noncommuting mappings without continuity in cone metric space,
J. Math. Anal. Appl., 341, 2008, 416. https://doi.org/10.1016/j.jmaa.2007.09.070
[2] T. Abdeljawad et al., Common Fixed Point Theorems In Cone Banach Spaces, Hacettepe J. Math. Stat., 40(2), 2011,
211-217. https://dergipark.org.tr/en/download/article-file /86609
[3] R. K. Gujetiya et al., Common Fixed Point Theorem for Compatible Mapping on Cone Banach Space, Int. J. Math. Anal.,
Vol. 8, No. 35, 2014, 1697-1706. http://dx.doi.org/10.12988 /ijma.2014.46166
[4] L. G. Huang and X. Zhang, Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings, J. Math. Anal. Appl.,
332(2), 1468-1476, 2007.
[5] E. Karapinar, Fixed Point Theorems in Cone Banach Spaces, Fixed Point Theory and Applications, Vol.2009, Article ID
609281,9 pages, 2009. doi:10.1155/2009,/609281.
[6] R. Tiwari, D.P. Shukla, Coincidence Points and Common Fixed Points in Cone Banach Spaces, J. Math. Comput. Sci.,
2(5), 2012, 1464-1474. https://scik.org/index.php/jmcs/article/view /451
[7] K. Sarkar, K. Tiwary, Common Fixed Point Theorems for Weakly Compatible Mappings on Cone Banach Space, Int. J.
sci. Res., Vol.5(2),2018,75-79. www.isroset.org
[8] P. G. Varghese, K. S. Dersanambika, Common Fixed Point Theorem on Cone Banach Space, Kathmandu University J.
Sci. Eng. Tech., Vol.9, No.1, 2013, 127-133.
[9] M. Asadi, and H. Soleimani, Examples in cone metric spaces: A survey. Middle-East Journal of Scientific Research, 11(12),
2012, pp.1636-1640. DOI: 10.5829/idosi.mejsr.2012.11.12.1462.
[10] M Asadi, B.E. Rhoades, H. Soleimani, Some notes on the paper" The equivalence of cone metric spaces and metric spaces"
Fixed point theory and applications 2012, 1-4. http://www.fixedpointtheoryandapplications.com/content/2012/1/87
[11] M. Asadi, H. Soleimani, S.M. Vaezpour, An order on subsets of cone metric spaces and fixed points of set-valued contrac-
tions, Fixed Point Theory and Applications 2009, 1-8. doi:10.1155/2009 /723203
[12] M. Asadi, H. Soleimani, S.M. Vaezpour, B.E. Rhoades, On-Stability of Picard Iteration in Cone Metric Spaces, Fixed Point
Theory and Applications 2009 (1), 751090. doi:10.1155,/2009/751090
[13] M. Asadi, S.M. Vaezpour, V. Rakocevi¢, B. E. Rhoades, Fixed point theorems for contractive mapping in cone metric
spaces Mathematical Communications 16 (1), 147-155, 2011. https://hrcak.srce.hr/file/102475
[14] M. Asadi, H. Soleimani, Some Fixed Point Results for Generalized Contractions in Partially Ordered Cone Metric Spaces,
Journal of Nonlinear Analysis and Optimization: Theory and Applications 6 (1), 2015. http://www.math.sci.nu.ac.th
[15] M. Asadi, S.M. Vaezpour, H. Soleimani, Metrizability of cone metric spaces, arXiv preprint arXiv:1102.2353, 2011.
https://doi.org/10.48550/arXiv.1102.2353
[16] H. Soleimani, S.M. Vaezpour, M. Asadi, B. Sims, Fixed Point and Endpoints Theorems for Set-Valued Contraction Maps

in Cone Metric Spaces, Journal of Nonlinear and Convex Analysis 16 (12), 2015, 2499-2505.



	Introduction
	Preliminaries
	Main Results
	Conclusions:
	Acknowledgments

