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Abstract

Motivated by recent researches conducted by Sehie Park, we here present various adjustments and clarifica-
tions concerning the quasi-metric extension of well-known fixed point theorems due to Rus, and Hicks and
Rhoades, respectively. In particular, some pertinent examples are given.
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1. Introduction and preliminaries

The study of the fixed point theory in quasi-metric spaces has received a renewed impetus in the last two
years due, in large part, to the contributions by Park [6, 7, 8]. In particular, he explored the quasi-metric
extension and possible improvement of relevant fixed point theorems due to Rus [11] and Hicks and Rhoades
[5]. The purpose of this note is to update, adjust and clarify some aspects of such extension, including some
pertinent examples.

At this point, and in order to help the reader, we recall (our notation and terminology are standard,
see, e.g., [9]) that by a quasi-metric on a set X we mean a function d from X × X to [0,∞) that fulfills
the following two conditions for all x, y, z ∈ X: (qm1) d(x, y) = d(y, x) = 0 if and only if x = y; (qm2)
d(x, y) ≤ d(x, z) + d(z, y).
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In this case, the pair (X, d) is called a quasi-metric space.
If the quasi-metric d verifies the next condition stronger than (qm1): d(x, y) = 0 if and only if x = y, we

say that d is a T1 quasi-metric on X and that (X, d) is a T1 quasi-metric space.
If d is a quasi-metric on a set X, the function ds : X×X → [0,∞) given by ds(x, y) = max{d(x, y), d(y, x)}

for all x, y ∈ X, is a metric on X.
It is well known that each quasi-metric d on a set X induces a T0 topology τd on X that has as a base

the family of open balls {Bd(x, ε) : x ∈ X, ε > 0} where Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all x ∈ X and
all ε > 0 (in particular, τd is T1 if and only if d is a T1 quasi-metric).

We say that a sequence (xn)n∈N in a quasi-metric space (X, d) is τd-convergent if it converges in the
topological space (X, τd). Hence, (xn)n∈N is τd-convergent to x ∈ X if and only if d(x, xn) → 0.

We will say that a self-mapping T of a quasi-metric space (X, d) is τd-continuous (resp. τds-continuous)
if it continuous from (X, τd) into itself (resp. from (X,τds) into itself).

On the other hand, and for our goals here, we will consider the following notions of quasi-metric com-
pleteness.

A quasi-metric space (X, d) is called:
(i) Smyth complete if every left K-Cauchy sequence is τds-convergent, where a sequence (xn)n∈N in X is

said to be left K-Cauchy if for each ε > 0 there is an nε ∈ N such that d(xn, xm) < ε whenever nε ≤ n ≤ m.
(ii) bicomplete if the metric space (X, ds) is complete.
Clearly, every Smyth complete quasi-metric space is bicomplete. The converse does not hold in general,

as the well-known Sorgenfrey quasi-metric line shows.
In [7], and according to the terminology proposed in [1, 4], left K-Cauchy sequences are called right

Cauchy sequences, Smyth complete quasi-metric spaces are called left-complete quasi-metric spaces and
bicomplete quasi-metric spaces are called complete quasi-metric spaces.

We emphasize that, as already was point out in [9, p. 71], completeness does not imply T -orbital
completeness in Park’s sense, contrary to what was stated in [7, p. 118]. However, it is clear that left-
completeness (i.e., Smyth completeness) does imply T -orbital completeness.

The monographs [2, 3] provide suitable sources for a deep study of quasi-metric spaces and other related
structures.

2. The metric case

In [11], Rus proved the following well-known result.

Theorem 2.1. Let (X, d) be a complete metric space. If T is a continuous self-mapping of X such that there
exists a constant α ∈ (0, 1) satisfying the inequality

d(Tx, T 2x) ≤ αd(x, Tx),

for all x ∈ X, then, T has a fixed point.

Later, Hicks and Rhoades [5] proved the following.

Theorem 2.2. Let (X, d) be a complete metric space. If T is a nonexpansive self-mapping of X such that
there exists a constant α ∈ (0, 1) satisfying the inequality

d(Tx, T 2x) ≤ αd(x, Tx),

for all x ∈ X, then, T has a fixed point.

Note that, in fact, Theorem 2.2 is a consequence of Theorem 2.1.
In an attempt of improving and unifying Theorems 2.1 and 2.2, Park stated in [6, Theorem H(γ1)] the

following.
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Theorem 2.3. Let (X, d) be a complete metric space. If T is a self-mapping of X such that there exists a
constant α ∈ (0, 1) satisfying the inequality

d(Tx, T 2x) ≤ αd(x, Tx),

for all x ∈ X, then, T has a fixed point.

Although, as formulated, Theorem 2.3 is not true (see Example 2.4 below), it remains true assuming that
T is orbitally continuous in the terms described and developed by Park (see, e.g., Theorem 3.2 of [7]) and
its proof).

Example 2.4. Let X = [0, 1] and let d be the usual metric on X. Define T : X → X as T0 = 1 and Tx = x/2
otherwise. Of course, (X, d) is complete and the self-mapping T of X has no fixed points. However, we have

d(T0, T 20) = d(1,
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1

2
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4
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for all x ∈ (0, 1]. So, all conditions of Theorem 2.3 are satisfied for α = 1/2.

3. The quasi-metric case

In [6, 7], Park discussed, among other types of contractions, the so-called RHR-maps in the framework
of quasi-metric spaces.

A self-mapping T of a quasi-metric space (X, d) is said to be a Rus-Hicks-Rohades map, or simply a
RHR-map, if there is a constant α ∈ (0, 1) such that d(Tx, T 2x) ≤ αd(x, Tx) for all x ∈ X.

In [7, Theorem 6.3] it was stated the following quasi-metric generalization of Theorem 2.3.

Theorem 3.1. Let (X, d) be a bicomplete quasi-metric space. Then, every HRH-map on (X, d) has a fixed
point.

As formulated, Theorem 3.1 is not true (compare Theorem 2.3). In fact, the next example shows that it
does not hold even if (X, d) is Smyth complete and T is a τd-continuous RHR-map.

Example 3.2. Let X = N ∪ {∞} and let d be the quasi-metric on X given by d(x, x) = 0 for all x ∈ X,
d(n,∞) = 0 for all n ∈ N, d(∞, n) = 1/n for all n ∈ N, and d(n,m) = 1/m for all n,m ∈ N with n ̸= m.

Then, (X, d) is a Smyth complete quasi-metric space (see, e.g., [9, p. 72]).
Now, let T be the self mapping of X defined as T∞ = 1, and Tn = 2n for all n ∈ N.
It is clear that T is τd-continuous. Moreover, we have that d(Tx, T 2x) = d(x, Tx)/2 for all x ∈ X [10, p.

104]. So, T is also an RHR-map on (X, d).
Finally, note that T is not τds-continuous because ds(∞, n) = 1/n but ds(T∞, Tn) = 1 for all n ∈ N.

However, Park [7, Theorem 3.2] obtained a positive result that we adapt to our context as follows.

Proposition 3.3. (Park) Let (X, d) be a Smyth complete quasi-metric space. Then, every τds-continuous
RHR-map on (X, d) has a fixed point.

Note that Example 3.2 shows that Proposition 3.3 cannot be extended to τd-continuous RHR-maps.
Nevertheless, we can obtain the following.

Proposition 3.4. Let T be a τd-continuous RHR-map on a Smyth complete quasi-metric space (X, d). Then,
there exists ξ ∈ X such that d(Tξ, ξ) = 0.
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Proof. (We sketch the proof) By hypothesis, there exists a constant α ∈ (0, 1) such that d(Tx, T 2x) ≤
αd(x, Tx) for all x ∈ X.

Fix x0 ∈ X. Then, d(Tnx0, T
n+1x0) ≤ αnd(x0, Tx0) for all n ∈ N, and, hence, (Tnx0)n∈N is a left

K-Cauchy sequence in the Smyth complete quasi-metric space (X, d). Hence, there is ξ ∈ X such that
d(ξ, Tnx0) → 0 and d(Tnx, ξ) → 0 as n → ∞. From the τd-continuity of T it follows that d(Tξ, Tn+1x0) → 0.
Since

d(Tξ, ξ) ≤ d(Tξ, Tn+1x0) + d(Tn+1x0, ξ),

for all n ∈ N, we deduce that d(Tξ, ξ) = 0, which concludes the proof.

Corollary 3.5. Every τd-continuous RHR-map on a Smyth complete T1 quasi-metric space (X, d) has a fixed
point.

Remark 3.6. Note that Proposition 3.4 applies to Example 3.2. In fact, we have d(T∞,∞) = 0, but T has
no fixed points.

We conclude the paper with an example showing that Propositions 3.3 and 3.4 cannot be generalized to
bicomplete quasi-metric spaces.

Example 3.7. Let X = (0, 1) and let d be the restriction on X of the classical Sorgenfrey quasi-metric.
Thus, d(x, y) = y − x if x ≤ y, and d(x, y) = 1 if x > y. Note that ds is the discrete metric on X, so (X, ds)
is a complete metric space, i.e., (X, d) is bicomplete.

Now, let T be the self-mapping of X defined as Tx = (1+x)/2 for all x ∈ X. Obviously, T is τd-continuous
and τds-continuous, and it has no fixed points in X. Moreover, T is a RHR-map on (X, d). Indeed, for each
x ∈ X we get

d(Tx, T 2x) = d(
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